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SUMMARY

Acute myeloid leukemia (AML) is a clonal disorder characterized by immature blasts and arrested differentia-

tion that primarily affects the bone marrow (BM) and occasionally presents as extramedullary (EM) disease. 
EM manifestations highlight AML’s adaptability to distinct microenvironments, which we examined using 
spatial analyses of medullary and EM tissues. We describe a workflow for Visium-based spatial transcriptom-

ics in medullary and EM AML, revealing insights into cell-cell communication and the spatial organization of 
AML hierarchies. In BM, monocytes and granulocyte-monocyte progenitors colocalized with leukemic pop-

ulations, sharing molecular signatures with those in EM sample. CXCL12-CXCR4-mediated communication 
correlated with PI3K/AKT/mTOR signaling in inflammatory niches. Trans-differentiation signals concentrated 
in AML-infiltrated regions; committed-like AML cells resided in inflammatory niches distant from trabeculae, 
while primitive-like cells localized near the endosteal niche. GeoMX digital spatial profiling and Opal multiplex 
fluorescent immunohistochemistry provided orthogonal validation. Overall, our study offers a valuable multi-

modal resource for exploring AML spatial biology with potential applications in other BM malignancies.

INTRODUCTION

Acute myeloid leukemia (AML) is a clonal disorder characterized 

by the presence of immature blasts and arrested differentiation. 1 

AML is primarily a bone marrow (BM) disease, but AML cells can 

emerge in extramedullary (EM) sites, and some patients with 

AML have isolated EM disease without BM involvement. 2 These 

EM manifestations highlight a highly adaptable leukemic proc-

ess, shaped by signals from the surrounding microenvironment, 

and this process can be revealed through spatial analyses of 

both medullary and EM tissues. Uncovering the spatial dynamics 

of AML cells is essential for identifying therapeutic targets and 

understanding resistance mechanisms. Spatial proteomics anal-

ysis has provided mechanistic insights into the immune evasion 

of AML cells and has revealed subcellular compartments in AML 

cells. 3,4 However, spatial proteomics can be constrained by a 

predetermined, targeted approach, which limits its breadth to

a fixed set of proteins, thus making it more useful for validation 

than for novel discovery. In contrast, spatial transcriptomics 

(ST), which can capture a vast array of genes without bias, facil-

itates the discovery of biological pathways, molecular profiles, 

and cellular interactions. Although, high-throughput ST is widely 

applied in solid cancers, 5–7 its use in BM-based diseases re-

mains relatively limited, 8–11 likely because the rigorous decalcifi-

cation required for the processing and sectioning of BM speci-

mens may compromise RNA integrity, and because many 

researchers perceive BM diseases as ‘‘liquid’’ cancers that 

lack a defined tissue architecture. 12 Leveraging ST to dissect 

AML can yield valuable insights into the tissue composition 

and cell-cell interactions within the osseous and non-osseous 

niches that sustain AML growth.

In the present study, we employed Visium array-based ST in 

paired diagnostic BM and EM samples from patients with AML 

and GeoMx digital spatial profiling on an AML tissue microarray
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to optimize spatial analysis in AML and study cell-cell interac-

tions. By spatially deconvolving the leukemic components using 

reference single-cell RNA sequencing (scRNA-seq) data from 

BM biopsies from AML and healthy donors, we created an ST 

map of medullary and EM leukemia. We integrated the ST anno-

tations with a proteomic panel of functional and phenotypic 

markers for orthogonal validation. Our findings captured estab-

lished AML biology patterns such as the CXCL12-CXCR4 inter-

actions, validating our approach. In addition, we found inflam-

matory pathways intertwined with endosteal BM niches in the 

maturation states of AML populations. We also mapped the spa-

tial distribution of the AML hierarchy, providing insights into its 

organization within the microenvironment. Our study demon-

strates the feasibility of using integrated ST and proteomic ap-

proaches to analyze the BM of patients with AML and supports 

the broader applicability of these methods beyond AML.

RESULTS

Comparative multi-omics analysis of acute myeloid 

leukemia patients’ bone marrow and extramedullary 

tissues

Our objective was to characterize spatial interactions in AML 

while addressing the challenges posed by the decalcification 

process and RNA quality inherent to the histopathological pro-

cessing of BM samples. To establish a control, we hypothesized 

that pairing BM tissues with EM non-osseous AML from the 

same patient would serve as an optimal comparison. We identi-

fied diagnostic trephine BM and EM biopsy samples collected 

from 2 patients with AML to be used for Visium-based ST profil-

ing and 4 AML patient BMs as validation cohort with the Visium

gene and protein expression assay (Figure 1A). The patients’ 

clinical characteristics are summarized in Table S1. Briefly, 

one patient, and 83-year-old man, presented with a cutaneous 

myeloid sarcoma (sample EM1) and concurrent medullary leuke-

mia (30% myeloblasts, sample BM1), and the other patient, a 

42-year-old man had a mediastinal mass (sample EM2) without 

histopathologic evidence of medullary AML involvement (2% 

myeloblasts, sample BM2) (Figures S1A–S1C). BM1 harbored 

mutations in NPM1, DNMT3A, IDH1, IDH2, FLT3, SF3B1, and 

KRAS. The targeted mutation panel was not performed for 

BM2 or EM2. Both patients had diploid cytogenetics.

We tested 2 Visium-based assays: version 1 (v1), and version 

2 (v2) (Methods) using all 4 patient samples (BM1, BM2, EM1, 

and EM2) concurrently. The pre-library RNA traces (DV 200 val-

ues) were 39% or higher for all samples except EM2 (24%) 

(Figures S1D–S1F). For BM1 and BM2, the post-library DNA 

traces in v1 (24% and 29%) were markedly lower than those 

in v2 (89% and 91%, respectively) which precluded further se-

quencing of the v1 BM libraries, whereas for EM1 and EM2, 

the post-library DNA traces in v1 (87% and 83%, respectively) 

were similar to those in v2 (88% and 91%, respectively) 

(Figures S1E, S1G, and S1H). These findings suggest that Vis-

ium v2, which includes automated tissue transfer, performs 

more reliably than v1 with BM tissues, even those with low 

pre-library DV 200 values (Methods). Also, v2 detected signifi-

cantly more genes than v1 did (Figures S1I–S1M). However, 

spatial correlation between the Visium gene and protein expres-

sions was weak, primarily due to low quality of the protein assay. 

(Figure S1N). To assess whether the structural integrity of bone 

regions was maintained during tissue processing, we overlaid 

the image of the BM section on the Visium slide with the image

Figure 1. Comparative spatial multi-omics analysis of acute myeloid leukemia patients’ bone marrow and extramedullary tissues

(A) Schematic representation of the study workflow. Paired bone marrow (BM) samples (BM1 and BM2) and extramedullary (EM) samples (EM1, from skin; and 

EM2, from lymph node) from 2 newly diagnosed patients with acute myeloid leukemia (AML) (PT1 and PT2) were fixed in formalin and embedded in paraffin (FFPE) 

and then sectioned for use in Visium assays (v1 and v2), and Opal multiplex fluorescent immunohistochemistry (mfIHC). The Visium spatial transcriptomics (ST) 

results were validated using GeoMx digital spatial profiling (DSP) with tissue microarrays (TMAs) of samples from 3 newly diagnosed patients with AML (PT3, PT4, 

and PT5). An additional 4 AML bone marrow samples that performed the Visium gene and protein expression assay are used as a validational cohort (PT6, PT7, 

PT8, and PT9). Image created with BioRender (https://biorender.com).

(B) Uniform manifold approximation and projection (UMAP) plot showing our reference map consisted of 79,029 cells collected from 9 healthy BM donors and 7 

patients with AML with diploid cytogenetics to match the patient cytogenetic profiles, and included both newly generated scRNA data and previous works. This 

map consisted of 21 cell types, including T cells (CD4 + and CD8 + naive, effector, and memory T cells, T regulatory [Treg] cells, and unconventional T cells), other 

immune cells (Natural killer [NK] cells, B cells and plasma cells), hematopoietic progenitors (Hematopoietic stem cells [HSCs], common lymphoid progenitors 

[CLPs], granulocyte-monocyte progenitors [GMPs]), myeloid cells (megakaryocytes/platelets, monocytes, early and late erythroid cells, conventional and 

plasmacytoid dendritic cells) and leukemic (AML) cell populations.

(C) Immunohistochemical staining of CD11c, MPO, and CD3e on BM1 sections that were used for histopathological annotation. The scale bar for the main tissue 

panels represents 1 mm. The scale bar for the zoomed-in panels, corresponding to the boxed regions, represents 100 μm.

(D) Unsupervised clustering and pathology annotation for the projected spatial map of BM1, revealing 3 distinct regions with an adjusted rand index (ARI) of 0.46.

(E) Spatial deconvolution of BM1 tissue, showing erythroid and AML cell populations, with CD11c immunohistochemistry (IHC) overlaid on an image of hem-

atoxylin and eosin (H&E)-staining. The dotted red lines represent regions enriched for the erythroid cell population; dotted black lines, regions enriched for the 

AML cell population; and solid lines, regions that overlapped with other tissue sections.

(F) Heatmap of Z score normalized canonical markers in pathology annotations, with matching unsupervised cluster distributions represented as a pie chart. 

HBB, HBD, HBA2, GATA1/2 are erythroid genes and S100A12, FCGR3A, CD14, MS4A7, and, CD33 are monocyte/leukemic genes.

(G) Representative overlay of Visium H&E staining with Opal mfIHC and the generated spot-level data for CD33, CD71, CXCL12, CXCR4, CD68, and IL-6. Boxes 

illustrate magnified regions showing concordance between transcript-level (Visium) and protein-level (Opal) signals at the spot level.

(H) Phenotype staining on near-adjacent tissue sections for markers of leukemic (CD33), monocytic (CD68), and erythroid (CD71) populations. DAPI was used as 

a nuclear counterstain. The spatial distribution of these markers corroborates ST-based spot deconvolution. Scale bars: 1 mm (whole-slide panels) and 100 μm 

(selected region panels).

(I) Box and spatial plots of mfIHC staining intensities for phenotypic markers across ST-defined clusters in BM1, highlighting the enrichment of leukemic and 

monocytic populations in cluster 3 and that of erythroid populations in cluster 2 at BM1. Scale bars: 1 mm (whole-slide panels) and 100 μm (selected region 

panels). ns, not significant. ****p < 0.0001, Wilcoxon rank-sum test.
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of the H&E-stained section. Indeed, spots in bone trabeculae 

areas, which usually have low cell abundance and a tendency 

to come off during tissue processing, were still maintained 

(Figure S1O). Overall, the v2 data demonstrated superior quality 

compared to v1, largely due to the automated tissue transfer ap-

proach, which preserved tissue integrity and thereby facilitated 

successful downstream analysis.

A known limitation of Visium is that multiple cells can occupy 

the same spot. Therefore, we utilized our in-house generated 

scRNA-seq BM reference data 13–16 (Figure 1B) to deconvolve 

individual spots (spatial regions) using a probabilistic label 

transfer workflow. We next conducted shared nearest neighbor 

(SNN) modularity optimization-based unsupervised cluster-

ing. 17 The resulting cluster labels were then compared to the 

tissue annotations established by 2 independent hematopa-

thologists by overlaying the Visium slides with the H&E− and 

clinical IHC-stained slides (Figures 1C, 1D, S2A, and S2B). In 

BM1, the SNN-based clustering identified 3 distinct clusters. 

Regions were defined as ‘‘mixed’’ (Region 1), ‘‘erythroid-en-

riched’’ (Region 2), and ‘‘monocytic/leukemia-enriched’’ (Re-

gion 3) (Figure 1E). The results aligned with differentially ex-

pressed genes in these regions and canonical markers of 

erythroid cells (HBB, HBA2, GATA1, and GATA2), monocytes

(S100A12, FCGR3A, CD14, and MS4A7), and myeloid cells 

(CD33) (Figure 1F, Table S2). To further confirm the deconvolu-

tion-based spot annotation, we performed mfIHC on near-adja-

cent tissue sections, enabling spatial proteomic analysis at the 

single-cell resolution (Figure S2D). To overcome the BM 

tissues’ high autofluorescence due to bone components and 

fixation, we applied light-based quenching 18 and manually ex-

cluded these areas in downstream analyses (Figure S2E). The 

mfIHC data were then aligned with the corresponding Visium 

samples for spot level integration (Figure 1G). Using the pheno-

typic markers – CD68 (for monocytic populations), CD71 (eryth-

roid cells), and CD33 (leukemic populations) – we validated 

our annotation approach. There was a consistent positive 

correlation between deconvolved cell types and protein inten-

sities compared to single gene-protein correlations in EM 

(Figure S2F). The cluster-based distribution of protein expres-

sion mirrored the ST data; in BM1, cluster 3 was enriched for 

leukemic and monocytic populations, and cluster 2 was en-

riched for erythroid cells (Figures 1H and 1I). In BM1, the 

most abundant cell type was AML cells, followed by mono-

cytes, whereas in BM2, late and early erythroid cells, along 

with GMPs, were most common (Figure S2G). Compared with 

BM2 (no morphologic leukemia detected), BM1 (∼30%

Figure 2. Spatial multi-omics profiling identifies leukemic infiltration and tissue composition in extramedullary acute myeloid leukemia 

samples

(A) Unsupervised clustering of the extramedullary sample EM1 into 3 spatial clusters (left) compared against the pathology-based annotation (right; indicating a 

composition of leukemia, dermis, epidermis, and gland). The adjusted rand index (ARI; 0.51) reflects moderate agreement between the clusters and pathology 

annotations.

(B) Spatial deconvolution scores obtained using the SpaCET algorithm show EM1’s malignant cell distribution overlaid on the hematoxylin and eosin (H&E) image.

(C) Heatmap of canonical marker expression in EM1 regions, validating transcriptional segregation and matching pathologist-defined regions. Markers of leu-

kemic populations and dermis regions show shared expression profiles. Unsupervised cluster overlap is represented as pie charts, with pathology annotation.

(D) Phenotypic staining (Opal multiplex immunofluorescent) on near-adjacent sections validating the spatial distribution of CD33 (malignant cells), CD68, and 

CD71, which is consistent with the Visium malignant signature (spot-level) and CD68 and CD71 expression patterns. Scale bars: 1 mm (whole-slide panels) and 

100 μm (selected region panels).
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Figure 3. Spatial heterogeneity of acute myeloid leukemia populations in bone marrow and extramedullary tissues

(A) Spatial map of the bone marrow sample BM1 showing spots with high leukemic scores (HLS; above the median acute myeloid leukemia [AML] deconvolution 

score; >0.15; orange) and low leukemic scores (LLS; below the median AML deconvolution score; ≤0.15; dark blue).

(B) Stacked bar plot of the cluster-based distribution of HLS and LLS spots in BM1.

(C) Volcano plot of the differential co-localization of cell populations within HLS and LLS spots of all BM samples. Deconvolution scores were compared using the 

Wilcoxon rank-sum test.

(D) Spatial deconvolution of monocytes, and granulocyte-monocyte progenitors (GMPs) in HLS spots in BM1 (top) and spatial deconvolution of late erythroid cells 

and CD8 + naive T cells in LLS spots in BM1 (bottom).

(E) Boxplots of deconvolution scores for monocytes, GMPs, late erythroid cells, and CD8 + naive T cells across the 3 unsupervised clusters in BM1. Median values 

are shown as white dots on black lines. **p < 0.01, ****p < 0.0001, Wilcoxon rank-sum test.

(legend continued on next page)
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leukemic blasts) had a slightly higher prevalence of effector and 

memory T cell populations but a lower abundance of erythroid-

lineage populations.

EM tissues included epidermis, dermis, germinal centers, and 

glands as expected due to the cutaneous nature of the EM dis-

ease. Unsupervised clustering segmented EM1 into 3 distinct 

clusters, which mostly overlapped with histopathological annota-

tions, with the exception of glandular tissue glandular tissue an-

notations (adjusted rand index = 0.51) (Figure 2A). We then ap-

plied the spatial cellular estimator for tumors (SpaCET) 

algorithm, 19 which is used in the spatial analysis of non-osseous 

solid cancer spatial analysis, to identify the leukemic regions 

(Figure 2B, STAR Methods). Deconvolution results were con-

firmed by comparing them with the histopathologic annotations 

on digital images of H&E staining of the same slide. Macrophages 

were the predominant predicted cell type in EM1, while cancer-

associated fibroblasts and endothelial cells exhibited the highest 

abundance in EM2 (Figure S2H). Tissue-specific markers and dif-

ferentially expressed genes validated the transcriptional segrega-

tion, revealing dermis infiltration by leukemic cells’ infiltration 

of the dermis in EM1, and confirmed the consistency of the 

unsupervised clusters with the pathologist-defined regions 

(Figures 2C and S2I; Table S3), which was also validated by 

mfIHC (Figure 2D). These results support the use of deconvolution 

for spot-level annotation, enabling further downstream analysis.

Spatial heterogeneity of cell populations in bone marrow 

and extramedullary tissues in patients with acute 

myeloid leukemia

We categorized each spot as having a high leukemic score 

(HLS; above the median AML deconvolution score) or a low leu-

kemic score (LLS; below the median AML deconvolution score) 

(Figures 3A and S3A; Table S4). In BM1, cluster-based analysis 

showed that HLS spots were about 14% more frequent than 

LLS spots in cluster 3, whereas LLS spots were 20% more fre-

quent than HLS spots in cluster 2 (Figure 3B). Monocytes 

and GMPs were predominantly associated with HLS spots in 

the BM environment (Figures 3C, S3B, and S3C). In addition, 

neighborhood analysis further showed that these cell types 

were also enriched in the immediate surroundings of HLS spots 

(Figure S3D). Monocytes were primarily in cluster 3, whereas 

GMPs were enriched in all 3 spatial clusters. CD8 + naive 

T cells were found throughout all clusters but had a higher spa-

tial concentration in cluster 1. In cluster 2, late erythroid cells 

were predominant, and this region showed the lowest propor-

tion of HLS-spots (Figures 3D and 3E). In EM1, immune cell pop-

ulations were co-localized. For instance, macrophages, which 

had the highest abundance in EM1, had strong co-localization 

with classical dendritic cells (Pearson correlation coefficient 

[r] = 0.67) and were associated with cancer-associated fibro-

blasts (r = 0.37) (Figure 3F), particularly in the tumor-infiltrated 

dermis region (Figure 3G).

Inferred pathway analysis reveals inflammatory niches 

and region-specific signatures in bone marrow and 

extramedullary tissues from patients with acute myeloid 

leukemia

We next compared the regulatory programs, distinguishing HLS 

spots from LLS spots (Figures S3E and S3F). Several genes 

involved in immune regulation, inflammasome activity, and tu-

mor progression, such as CD70, TMEM176B, TP53INP2, and 

TNFSF13B, 20–24 were significantly enriched in the HLS spots in 

BM1, and these same genes were also highly expressed in the 

EM leukemic regions of the same patient (Figure S3G). Differen-

tial expression analysis between BM HLS spots and EM malig-

nant regions revealed enrichment of erythroid-lineage differen-

tiation genes characteristic of low-cycling progenitors (e.g., 

HEMGN, KLF1, and ALAS2), whereas EM spots preferentially 

expressed extracellular matrix and EMT-associated genes 

(e.g., CIDEA, PLIN5, and CLMP) (Figure S3H). Pathway profiling 

further demonstrated that the paired BM and EM samples 

from each patient shared common molecular signatures 

(Figure S4A). For instance, in PT1, pathways related to inflamma-

tion (e.g., IFNα, IFNγ, inflammatory response, and TGF-β path-

ways) and energy metabolism (e.g., oxidative phosphorylation 

and glycolysis pathways) were upregulated in both BM1 and 

EM1, whereas these were relatively downregulated in both 

BM2 and EM2. We also observed prominent epithelial-mesen-

chymal transition (EMT)-like programs linked to neoplastic mi-

gration and trans-differentiation in the EM1 and EM2. Notably, 

the profiles of cluster 3 of BM1, particularly those involving in-

flammation-related pathways, closely matched those of the leu-

kemic cluster of EM1 (Figure S4B).

Dysregulated inflammatory pathways in the BM microenviron-

ment contribute to leukemogenesis and leukemic blast mainte-

nance in AML. 25,26 We thus defined a composite inflammation 

score using inflammation-related hallmark pathways and then 

clustered the spatial data using Jenks natural breaks optimiza-

tion (STAR Methods, Figures 4A and S4C). When comparing 

only high-inflammatory regions, the EM site revealed greater in-

flammation (Figure S4D). Among the pathways constituting the 

composite inflammation score, IFN-γ signaling was specifically 

elevated in EM, whereas only the complement pathway showed 

higher activity in BM (Figure 4B). As expected, cluster 3 in BM1 

and cluster 1 in EM1 exhibited the highest inflammation scores, 

which is consistent with the leukemic enrichment in these clus-

ters (Figure 4C). To further explore the spatial inflammatory path-

ways, we performed mfIHC for IL-6, a key inflammatory marker, 

and found similar spatial patterns of IL-6 expression in adjacent 

regions (Figure 4D). Furthermore, for both BM1 and EM1, the 

IL-6 staining intensities were positively correlated with the com-

posite inflammation score (Figures 4E and S4E).

Given the association between high inflammation and AML en-

richment, we next sought to determine whether this highly in-

flammatory niche influences T cell states across bone marrow

(F) Correlation heatmap of cell populations in the extramedullary sample EM1, highlighting significant co-localization between macrophages and classical 

dendritic cells (cDCs).T EM , effector memory T cells; T CM , central memory T cells; NK, natural killer cells; pDC, plasmacytoid dendritic cells; CAF, cancer-as-

sociated fibroblasts. ***r > 0.7, **r > 0.5, Pearson absolute correlation.

(G) Spatial mapping of macrophage and cDC spots in EM1, showing their co-localization in tumor-infiltrated dermis clusters (clusters 1 and 2). *p < 0.05, 

**p < 0.01, ***p < 0.001, ****p < 0.0001, Wilcoxon rank-sum test.
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Figure 4. Inflammatory microenvironment analysis reveals region-specific signatures in bone marrow and extramedullary tissues from 

patients with acute myeloid leukemia

(A) Distribution of spatial inflammation classes in BM1 and EM1, based on composite inflammation scores from inflammation-related hallmark pathways (In-

flammatory response, IL6/JAK/STAT3 signaling, TNF-α/NF-κB signaling, IFN-γ response, IFN-α response, Complement, IL2/STAT5 signaling). Classes were 

defined using Jenks’ natural breaks optimization.

(B) Mean activity comparison of individual inflammatory related pathways in spots with high-inflammatory activity revealed the highest activity of IFN-γ response 

in EM tissue. Complement pathway activity is higher in BM1 when compared with the EM1 inflammatory niche. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, 

Wilcoxon rank-sum test.

(C) Boxplots of inflammation scores across the 3 clusters in BM1 (left) and EM1 (right). Each cluster displays significantly different levels of inflammatory activity; 

leukemia-enriched cluster 3 in BM1 and cluster 1 in EM1 have higher inflammation scores. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, Wilcoxon rank-sum 

test.

(D) IL-6 staining (Opal multiplex fluorescent immunohistochemistry [mfIHC]) in whole-slide images (left) of BM1 (top) and EM1 (bottom) and corresponding 

magnified regions (center), aligned with Visium spot-level composite inflammation score (right). Scale bars: 1 mm (whole-slide panels) and 100 μm (selected 

region panels).

(E) Scatterplots showing the correlation of IL-6 protein staining intensity (mfIHC IL-6) with the composite inflammation score in BM1 (left) and EM1 (right). IL-6 

levels are higher in high-inflammation regions in both BM1 and EM1.

(F) Dot plot showing the localization of T cell subtypes (exhausted, CD8 + dysfunction, senescence, regulatory T cells [Treg]) based on inflammation class in BM1 

and EM1.
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and extramedullary sites. Although T cells were relatively scarce 

in our spatial profile, deconvolution analysis revealed that T cells 

with exhausted phenotypes were generally enriched in high-in-

flammatory regions. However, in BM1 and BM6, exhausted 

phenotypes appeared more prominent in lower inflammatory re-

gions. CD8 + dysfunction and T regulatory cell signatures were 

consistently associated with highly inflamed niches across all 

samples (Figures 4F, S4F, and S4G). 14,16,27 Taken together, 

these observations suggest that BM and EM sites in the same 

patient can have similar inflammatory programs, which are asso-

ciated with T cell exhaustion within highly inflammatory niches.

Spatial cell communication analysis highlights the 

CXCL12-CXCR4 axis in the inflammatory niche

After defining each cell type based on the deconvolution 

score, we performed spatial cell-cell communication analysis 

(Figure S5A). 28 Among the most prominent signaling interactions, 

we identified that strong CXC chemokine family (CXCL) signaling 

was present across all subtypes (Figure S5B). For instance, the 

CXCL12-CXCR4 axis emerged as a key pathway among AML 

cells, GMPs, and monocytes (Figures 5A, S5C, and S5D). Exam-

ining the relationship of the CXCL12-CXCR4 pair within the in-

flammatory niche, we found that both the CXCL12 ligand and 

the CXCR4 receptor showed high expression levels in spots 

with higher inflammation scores (Figures 5B, S6A, and S6B). To 

validate our ST findings, we performed mfIHC for the CXCL12-

CXCR4 axis (Figures 5C, 5D, S6C, and S6D). In EM1 samples, 

both CXCL12 and CXCR4 demonstrated spatial concordance 

between gene expression and protein localization. In BM, 

CXCL12 showed high concordance, while CXCR4 exhibited 

minimal spatial overlap. In these highly inflammatory regions, 

the PI3K/AKT/mTOR pathway, a downstream target of the 

CXCL12-CXCR4 axis, was strongly correlated with the co-ex-

pression of CXCL12-CXCR4 (Figures 5E and S6E–S6H). 29 This 

pathway’s ability to directly induce trans-differentiation aligns 

with our observation of elevated epithelial-mesenchymal transi-

tion (EMT) programs in these areas (Figures S6I and S6J).

To examine whether this mechanism was linked to the EM 

sites, we assessed the spatial expression of CXCL12 and 

CXCR4 in EM1. CXCR4 was abundantly expressed throughout 

the tissue and positively correlated with the composite inflam-

mation score (Figure 5F), and spatial proteomics demonstrated 

increased CXCR4 protein levels in the inflammatory regions of 

EM1 (Figure 5G). By contrast, CXCL12 levels were elevated in 

the inflammatory regions of BM1 but were more diffusely distrib-

uted in EM1 (Figures S6K and S6L). Notably, both PI3K/AKT/ 

mTOR signaling and trans-differentiation programs were active 

in the highly inflammatory regions of EM1 (Figure 5H).

Deconvolution of leukemia-enriched spots reveals the 

localization of acute myeloid leukemia cells in different 

differentiation states within inflammatory and endosteal 

niches

We next applied linear mixed model annotation 30 to classify AML 

cells (n = 16,167 cells) based on their scRNA data into their differ-

entiation states relative to the hierarchies in control BM samples 

from healthy donors (n = 20,778 cells). 31 This classification de-

fined AML cells as: primitive-like (a combination of HSC-like 

and common myeloid progenitor/lymphoid-primed multipotent 

progenitor-like; n = 5,039), GMP-like (n = 6,432), erythroid-like 

(n = 1,816), lymphoid-like (n = 55), and committed-like (a combi-

nation of monocyte-like, basophil-like, and dendritic cell-like; n = 

2,825) (Figure 6A). We then applied this classification to HLS 

spots in BM1 (n = 1,271 spots) (Figure S7A) and leukemic region 

spots in EM1 (n = 1,726 spots) (Figures 6B and 6C) to obtain a 

spot-level spatial classification of AML hierarchies. Cluster-

based analysis revealed that committed-like populations were 

located distally to the primitive-like populations (Figures S7B 

and S7C). Deconvolution scores indicated a lower abundance 

of primitive-like cells compared to committed-like cells in EM 

tissue (Figures S7D and S7E). We found that committed-like 

AML populations were concentrated in inflammatory niches 

(Figures 6D, 6E, and S7F).

We then applied the SpatialTime pipeline 32 (Methods) to 

measure the spatial localization of HLS spots, based on the de-

gree of AML differentiation, relative to the trabecular bone re-

gions (Figure 7A; Figure S7G). We found that primitive-like cell 

populations were localized proximally to the bone, whereas 

GMP- and committed-like populations were localized distally 

(Figure 7B). To validate these findings, we performed a GeoMx 

DSP whole-transcriptome microdissection-based assay on 13 

BM regions from 3 additional patients with AML. (Figures S7H

Figure 5. Chemokine signaling through the CXCL12-CXCR4 axis is linked to inflammatory niches and trans-differentiation in acute myeloid 

leukemia

(A) Spatial and chord diagrams of the strength of interactions among acute myeloid leukemia (AML) cells, granulocyte-monocyte progenitors (GMP), and 

monocytes through the CXCL12-CXCR4 axis, as predicted by CellChat.

(B) Boxplots of the expression levels of CXCL12 and CXCR4 in BM1, stratified by inflammation class (top), and corresponding spot-level expression maps 

(bottom) for the bone marrow sample BM1. Red spots indicate higher expression levels.

(C and D) Whole-slide images of Opal multiplex fluorescent immunohistochemistry (mfIHC; left) for CXCR4 (turquoise) and CXCL12 (magenta) overlaid with DAPI 

(blue), alongside magnified Opal regions and Visium-based gene expression maps (right) in BM1 (C) and the extramedullary sample EM1 (D). Scale bars: 1 mm 

(whole-slide panels) and 100 μm (selected region panels).

(E) Scatterplot shows the positive correlation of the PI3K/Akt/mTOR pathway score with the combined CXCL12-CXCR4 co-expression score (R = 0.50, p < 2.2e-

16). Colors denote inflammation class.

(F) Relationship between CXCR4 expression and inflammation score in EM1 (R = 0.19, p < 2.2e-16). Spatial maps show the distribution of CXCR4 expression.

(G) Boxplots comparing CXCR4 protein signal intensity (mfIHC) across inflammation classes in BM1 (left) and EM1 (right). Spot-level images illustrate higher 

CXCR4 signal intensities in high-inflammation areas.

(H) Sections 1 and 2 represent adjacent serial sections of the same EM1 biopsy embedded on a single Visium capture area. Visium ST visualization of PI3K/Akt/ 

mTOR pathway (left) and trans-differentiation pathway (right) activity in these EM1 sections, revealing elevated pathway scores in high-inflammation and leukemic 

regions.
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and S7I). CD34 and CD68 protein markers were used to define 

the leukemic regions covering primitive and more differentiated 

cells (Figures S7J and S7K). Of note, we also attempted CD3 

for T cell classification, but reliable segmentation mask could 

not be generated. Congruent with our Visium ST analysis, phe-

notypically primitive-like cells were detected proximal to the 

bone, whereas more differentiated cells were predominantly dis-

tal from the bone (Figures 7C and 7D). Taken together, these 

findings suggest that AML cells in different states of differentia-

tion localize in distinct niches within the BM.

DISCUSSION

In this study, we demonstrated the feasibility of applying Visium 

ST to both medullary and EM AML tissues. By using the v2 assay, 

which has automated tissue transfer, we achieved better library 

quality, facilitating more robust downstream analyses. We also 

integrated our ST data with mfIHC data, illustrating the value of 

combining transcriptomic and proteomic information, which rep-

resents a key application of this integration for the Visium ST data 

with mfIHC in the analysis of AML BM. While next-generation 

imaging-based platforms such as Xenium and MERSCOPE offer 

higher resolution, they rely on targeted panels that are best 

suited for validation. 33 Our approach provides a broad, discov-

ery-oriented snapshot of AML’s spatial landscape. In addition, 

we complemented our Visium approach with GeoMx-based

DSP to orthogonally validate its features, underscoring Visium’s 

potential applicability to other BM malignancies.

Inflammation is a well-established hallmark of cancer, 34 and 

recent work indicates that inflammatory states shape the immune 

microenvironment, are correlated with AML differentiation, and 

impact disease progression and chemoresistance. 8,13,26,35,36 In 

our spatial analyses, we classified Visium spots by their inflam-

matory signatures and uncovered distinct ‘‘niches’’ in both BM 

and EM tissues. Notably, regions with higher inflammation 

hosted AML cells spanning multiple differentiation states and 

showed a pronounced association between committed-like 

AML cells and inflammatory signals.

We observed that highly inflammatory niches often harbored 

AML cells and monocytes, highlighting the CXCL12-CXCR4 

axis as a central signaling pathway. CXCL12 binds to CXCR4 

and governs AML cell homing, migration, and therapy evasion 

in the BM. 37–40 Our EM samples had widespread CXCR4 expres-

sion, suggesting that this pathway may also facilitate leukemic 

infiltration beyond the BM.

Downstream of the CXCL12-CXCR4 axis is the PI3K/AKT/ 

mTOR pathway, which is well known to promote EMT-like pro-

cesses in solid tumors. 29,41–43 In our study, EMT-like or trans-dif-

ferentiation signatures were correlated with CXCL12-CXCR4 

signaling in inflammatory niches, suggesting a possible mecha-

nism by which AML cells disseminate along the medullary-EM 

axis, consistent with recent findings implicating EMT pathways

Figure 6. Hierarchical differentiation states of acute myeloid leukemia cells and their distribution across bone marrow and extramedullary 

tissues

(A) Uniform manifold approximation and projection (UMAP) projection of 16,167 acute myeloid leukemia (AML) cells into different differentiation states: primitive-

like, granulocyte-monocyte progenitor (GMP)-like, erythroid-like and lymphoid-like, and committed-like.

(B) Spatial deconvolution maps of spots with high leukemic scores in the bone marrow sample BM1 showing primitive-like, GMP-like, and committed-like AML 

cells.

(C) Spatial deconvolution maps of the extramedullary sample EM1 showing primitive-like, GMP-like, and committed-like AML cells.

(D and E) Violin plots shows the distribution of committed-like AML cells in BM1 (D) and EM1 (E) across inflammation classes.
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in EM AML progression. 44 These findings warrant further inves-

tigation, particularly in patients with concomitant EM disease. 

CXCR4 inhibitors have been evaluated previously in AML. Our 

spatial results suggest revisiting CXCL12/CXCR4 targeting with 

biomarker guidance and considering combinations with PI3K/ 

AKT/mTOR inhibitors in inflamed niches. 41

The BM-resident leukemic population closely resembled its 

EM-resident counterpart at the transcriptomic level, particularly 

within highly inflammatory niches. Genes such as CD70, RAB3D, 

and TP53INP2, along with novel markers such as TNFSF13B and 

TMEM176B, were upregulated in monocyte-like AML clusters in 

both BM and EM samples. This finding suggests a conserved 

program across these distinct microenvironments and highlights 

candidate targets for further investigation.

The interplay between hematopoiesis and the endosteal niche 

maintains the quiescence and self-renewal of HSCs and the 

supportive capacity of the BM microenvironment. 45,46 Previous 

studies established that HSCs and multipotent progenitors con-

centrate near the bone surface, whereas committed progenitors 

and differentiated cells occupy more distal regions. 47 Building on 

these findings, we used a multimodal ST approach to map AML 

differentiation states in the BM. Our analyses indicate that GMP-

like and committed-like AML populations cluster farther from en-

dosteal surfaces, whereas primitive-like cells localize nearer to 

the bone, implying that osteoblastic regions may help sustain 

AML stemness.

Our study represents one of the first in-depth applications of 

ST to paired medullary and EM AML samples. Recent publica-

tions have highlighted the technical challenges and quality con-

trol aspects of performing ST on human BM but have rarely ad-

dressed the extended biological insights that can emerge from 

such analyses. 9 By contrast, we integrated Visium ST with mfIHC 

and DSP to not only tackle these technical hurdles but also to 

delve more deeply into AML’s spatial biology.

Integrating spatial multi-omics with emerging therapeutic 

strategies could provide a roadmap for precision interventions 

in AML. Spatial mapping of resistance-associated phenotypes, 

including immune evasion and inflammatory programs, may 

also guide the deployment of targeted immunotherapies in mi-

croenvironmentally and anatomically defined contexts. These 

applications underscore the translational relevance of spatial 

omics for tailoring therapy to microenvironmental heterogeneity. 

In summary, our approach yielded key insights into the roles 

of inflammatory niches and the CXCL12-CXCR4-PI3K/AKT/ 

mTOR axis in AML progression, including the possibility that 

the endosteal niche supports more primitive AML populations.
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Figure 7. Bone proximity analysis reveals the spatial distribution of acute myeloid leukemia cells in different differentiation states

(A) Representative spatial map of SpatialTime calculated distances from trabeculae overlaid with hematoxylin and eosin (H&E) image.

(B) Boxplots show deconvolution scores of primitive-like, granulocyte-monocyte progenitor (GMP)-like, and committed-like acute myeloid leukemia (AML) cells 

relative to their distance from bone in Visium data. *p < 0.05, ****p < 0.0001, Wilcoxon rank-sum test.

(C) GeoMx analysis of AML deconvolution in bone marrow regions from 3 patients with AML (PT3, PT4, PT5). D, distal (dark red); P, proximal (dark blue); B, bone 

(white). Stacked bar plots represent cell type deconvolution within distal and proximal regions. Scale bars: 250 μm.

(D) Line graphs show proportions of primitive-like and GMP-like cells relative to distance from bone.
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Studies in larger, more diverse cohorts are necessary to validate 

and extend these observations. Nevertheless, our work under-

scores the potential of integrating ST with orthogonal assays 

to elucidate AML biology, potentially informing novel therapeu-

tic avenues.

Limitations of the study

Our study had certain limitations. Its small sample size reflects 

both the rarity of paired pre-treatment medullary and EM biopsy 

samples from patients with AML and the high cost of spatial 

assays. Moreover, our scRNA-seq reference data excluded neu-

trophils and mesenchymal stromal cells owing to challenges in 

isolating these cell types; in addition, the 55 μm spot size of 

the Visium assay can obscure finer details in highly heterogene-

ous tissues such as BM. While we employed a label transfer ap-

proach using scRNA-seq data to infer probabilistic cell-type 

scores across Visium spots, the lack of single-cell resolution lim-

its the accurate detection of some populations, including the 

stromal cells that were missing in our reference map. To mitigate 

these issues, we employed a tailored median absolute deviation-

based filtering method, broad clustering to define intra-sample 

niches, validation of cell predictions via H&E staining and IHC 

by 2 independent hematopathologists, and the complementary 

use of mfIHC and DSP for greater resolution; however, it is im-

portant to note that the mfIHC and Visium datasets were derived 

from near-adjacent sections separated by two sequential 5 μm 

cuts, which may introduce spatial mismatches and contribute 

to imperfect correlation between transcriptomic and protein sig-

nals. In addition, in the four BM samples analyzed, Visium’s dual 

gene and protein expression assay, we observed limited gene-

protein spatial correlation, precluding their use for robust pro-

teomics validation. Importantly, tissue procurement vary across 

institutions and patients (from time to collection to fixation, de-

calcification methods etc), introducing technical heterogeneity 

that may affect RNA quality, spatial resolution, signal intensity, 

which is challenging to fully standardizse in studies using pa-

tient-derived samples.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement

This study complied with the Declaration of Helsinki. Collection and use of human materials were approved by the Institutional Re-

view Board of MD Anderson Cancer Center. (Institutional Review Board number: 2022-0576).

Human samples

The study included a total of 9 patients. Bone marrow (BM) and extramedullary (EM) core biopsy samples from 2 AML patients were 

used for the primary Visium comparison (BM1, EM1, BM2, EM2), 4 AML patient BMs were used for a validational cohort, and 3 AML 

patients were used for GeoMx DSP. The cohort consisted of 5 male and 4 female individuals. Due to the limited sample size within 

each group, the influence of sex/gender on the results could not be statistically determined. All patient clinical information is shown in 

Table S1.

METHOD DETAILS

Sample preparation and clinical immunohistochemistry

BM and EM core biopsy samples were fixed in formalin and embedded in paraffin. (BM samples were decalcified with 10% formic 

acid before paraffin embedding.) Sections (4 μm) were cut for hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC). 

For IHC, slides were deparaffinized, rehydrated, and subjected to heat-induced antigen retrieval. The slides were incubated with pri-

mary antibodies against CD11c, MPO, and CD3e for 1 h, incubated with horseradish peroxidase-conjugated secondary antibodies 

and 3,3 ′ -diaminobenzidine, and counterstained with hematoxylin.

GeoMx digital spatial profiling

An 8x8 tissue microarray (TMA) was constructed from 12 FFPE bone marrow (BM) biopsies; nine cores were profiled using the 

NanoString GeoMx DSP platform. Two cores (AOIs 1–3) were excluded due to M6 AML. For selected cores, regions of interest 

(ROIs) were annotated both adjacent to and ≥200 μm distal from bone trabeculae and segmented into CD68 + , CD34 + , and non-mye-

loid AOIs using anti-CD68 (KP1), anti-CD34 (QBend/10), and SYTO13 staining. Anti-CD3 (PC3/188A) was included but failed quality 

thresholds and was not used. RNA expression (∼18,000 genes) was captured with UV-cleaved barcodes from the Whole Transcrip-

tome Atlas. Data were processed with GeomxTools R package. Low-expressing probes were filtered, followed by Q3 normalization 

and log transformation.Myeloid AOIs were deconvolved using CIBERSORTx 4 with a custom reference. Cell types were grouped into 

primitive-like, committed-like, and lymphoid-like states. Paired t-tests compared cell-type proportions between proximal and distal 

AOIs. Analyses were performed in R (v4.3.0).

Visium spatial transcriptomics

Formalin-fixed, paraffin-embedded BM and EM biopsy samples were processed using the Visium (10x Genomics). RNA quality was 

assessed as the percentage of fragments greater than 200 nucleotides (DV 200 ). Tissue sections were processed via both the 

CytAssist platform (v2 assay; 11 × 11 mm capture areas) and directly placed on Visium slides (v1 assay; 6.5 × 6.5 mm capture areas). 

Four BM tissue sections were also profiled with the Visium Human Immune Cell Profiling Panel. Libraries were prepared according to 

standard protocols, SPRI-cleaned, quantified with Bioanalyzer and qPCR (KAPA kit), and sequenced on Illumina NovaSeq 6000. 

FASTQ files were generated and aligned to GRCh38 using SpaceRanger (v2.0). Tissue morphology was annotated by two expert 

pathologists based on H&E and IHC scans (Aperio, Akoya), and mapped to Visium spots via Loupe Browser.

Opal mfIHC

Near-adjacent FFPE sections from bone marrow and extramedullary tissues were processed for multiplexed fluorescent IHC using 

the Opal system (Akoya Biosciences). Slides were deparaffinized, underwent heat-induced epitope retrieval, and were sequentially 

stained with primary antibodies and Opal fluorophores, using horseradish peroxidase and iterative antibody stripping to enable multi-

plexing. DAPI was applied as a nuclear counterstain. Staining was automated on the NanoVIP 100 platform (Biogenex), and slides 

were imaged at 0.25 μm resolution using the PhenoImager HT 2.0. Spectral unmixing was performed at acquisition using custom 

fluorescence libraries. Unmixed images were aligned to Visium CytAssist reference images using 15–25 anatomical anchor points

Continued
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in Visiopharm TissueAlign. A single ROI per tissue was defined after segmenting and excluding bone, artifacts, and empty regions 

through a combination of deep-learning-based and manual refinement. Cell segmentation was performed based on DAPI signals 

using a U-net model. Marker intensities were smoothed, arcsinh-transformed, and averaged per cell, then aggregated to the Visium 

spot level based on spatial overlap. For spatial correlation analysis between transcript and protein signals, Lee’s L statistic was com-

puted using Visium coordinates and a spatial weight matrix based on six nearest neighbors.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analysis information can be found corresponded figure legends.

Filtering and data processing

Spatial spots were filtered by eliminating those not within ±3 median absolute deviations of mitochondrial gene content, total oligo-

nucleotide counts, and detected gene numbers. Filtered spots underwent SCTransform normalization in Seurat, followed by principal 

component analysis and uniform manifold approximation and projection for dimensional reduction.

Spatial spot deconvolution

Reference scRNA seq data from BM samples from healthy donors (n = 9) and AML patients with diploid karyotype (n = 7) integrated. 

Visium BM samples from AML patients deconvolved with this reference by Seurat label transferring method. BM2 sample decon-

volved with scRNA-seq reference contain only healthy compartments. Spatial spots were classified as having a high leukemic score 

(HLS; higher than the median AML deconvolution score) or low leukemic score (LLS; lower than the median AML deconvolution 

score). Due to structural differences EM samples were deconvolved with the SpaCET (Spatial Cellular Estimator for Tumors) 6 Pan 

Cancer dictionary to identify cell types. AML cell states were further resolved using transfer learning.

Spatial analyses

Differential deconvolution analysis calculated with Wilcoxon rank-sum test between HLS and LLS spots for predicted cell type 

scores. Cell labels were assigned to spots based on prediction probabilities and used along with spatial coordinates to infer 

ligand-receptor interactions with the CellChat. 12 To assess niche proximity, we applied SpatialTime pipeline. 48 Trabecular bone re-

gions were manually contoured, and the shortest distance from each Visium spot to the nearest bone surface was computed. Dis-

tances were scaled from 0 (adjacent) to 1 (furthest), and spots were classified as proximal or distal based on the median distance 

value. Spatial trends in cell states and pathway activity were analyzed relative to this spatial gradient.

Pathway analysis and inflammatory niche classification

Curated gene sets (hallmark) obtained from molecular signatures database and these gene sets were individually scored for each 

sample using the AUCell pipeline. 7 Spatial coordinates and pathway scores for inflammatory pathways (IL6/JAK/STAT3 signaling, 

IFNγ Response, IFNα Response, TNFα/NF-κB signaling, complement, and IL2/STAT5 signaling) were extracted, normalized and a 

composite inflammatory score was calculated as the mean of these normalized scores. To stratify and define inflammatory niches, 

we applied the Jenks Natural Breaks classification method to divide the composite inflammation score into four categories (Low, 

Medium-Low, Medium-High, and High). This method optimally partitions continuous data by minimizing intra-class variance and 

maximizing inter-class variance, making it suitable for spatially skewed distributions without assuming cluster symmetry and size 

balance.
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