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Integrative spatial multi-omics reveal niche-specific
inflammatory signaling and differentiation
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SUMMARY

Acute myeloid leukemia (AML) is a clonal disorder characterized by immature blasts and arrested differentia-
tion that primarily affects the bone marrow (BM) and occasionally presents as extramedullary (EM) disease.
EM manifestations highlight AML’s adaptability to distinct microenvironments, which we examined using
spatial analyses of medullary and EM tissues. We describe a workflow for Visium-based spatial transcriptom-
ics in medullary and EM AML, revealing insights into cell-cell communication and the spatial organization of
AML hierarchies. In BM, monocytes and granulocyte-monocyte progenitors colocalized with leukemic pop-
ulations, sharing molecular signatures with those in EM sample. CXCL12-CXCR4-mediated communication
correlated with PISBK/AKT/mTOR signaling in inflammatory niches. Trans-differentiation signals concentrated
in AML-infiltrated regions; committed-like AML cells resided in inflammatory niches distant from trabeculae,
while primitive-like cells localized near the endosteal niche. GeoMX digital spatial profiling and Opal multiplex
fluorescent immunohistochemistry provided orthogonal validation. Overall, our study offers a valuable multi-

modal resource for exploring AML spatial biology with potential applications in other BM malignancies.

INTRODUCTION

Acute myeloid leukemia (AML) is a clonal disorder characterized
by the presence of immature blasts and arrested differentiation.’
AML is primarily a bone marrow (BM) disease, but AML cells can
emerge in extramedullary (EM) sites, and some patients with
AML have isolated EM disease without BM involvement.” These
EM manifestations highlight a highly adaptable leukemic proc-
ess, shaped by signals from the surrounding microenvironment,
and this process can be revealed through spatial analyses of
both medullary and EM tissues. Uncovering the spatial dynamics
of AML cells is essential for identifying therapeutic targets and
understanding resistance mechanisms. Spatial proteomics anal-
ysis has provided mechanistic insights into the immune evasion
of AML cells and has revealed subcellular compartments in AML
cells.®>* However, spatial proteomics can be constrained by a
predetermined, targeted approach, which limits its breadth to
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a fixed set of proteins, thus making it more useful for validation
than for novel discovery. In contrast, spatial transcriptomics
(ST), which can capture a vast array of genes without bias, facil-
itates the discovery of biological pathways, molecular profiles,
and cellular interactions. Although, high-throughput ST is widely
applied in solid cancers,”” its use in BM-based diseases re-
mains relatively limited,®"" likely because the rigorous decalcifi-
cation required for the processing and sectioning of BM speci-
mens may compromise RNA integrity, and because many
researchers perceive BM diseases as “liquid” cancers that
lack a defined tissue architecture.'® Leveraging ST to dissect
AML can yield valuable insights into the tissue composition
and cell-cell interactions within the osseous and non-osseous
niches that sustain AML growth.

In the present study, we employed Visium array-based ST in
paired diagnostic BM and EM samples from patients with AML
and GeoMx digital spatial profiling on an AML tissue microarray
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to optimize spatial analysis in AML and study cell-cell interac-
tions. By spatially deconvolving the leukemic components using
reference single-cell RNA sequencing (scRNA-seq) data from
BM biopsies from AML and healthy donors, we created an ST
map of medullary and EM leukemia. We integrated the ST anno-
tations with a proteomic panel of functional and phenotypic
markers for orthogonal validation. Our findings captured estab-
lished AML biology patterns such as the CXCL12-CXCR4 inter-
actions, validating our approach. In addition, we found inflam-
matory pathways intertwined with endosteal BM niches in the
maturation states of AML populations. We also mapped the spa-
tial distribution of the AML hierarchy, providing insights into its
organization within the microenvironment. Our study demon-
strates the feasibility of using integrated ST and proteomic ap-
proaches to analyze the BM of patients with AML and supports
the broader applicability of these methods beyond AML.

RESULTS

Comparative multi-omics analysis of acute myeloid
leukemia patients’ bone marrow and extramedullary
tissues

Our objective was to characterize spatial interactions in AML
while addressing the challenges posed by the decalcification
process and RNA quality inherent to the histopathological pro-
cessing of BM samples. To establish a control, we hypothesized
that pairing BM tissues with EM non-osseous AML from the
same patient would serve as an optimal comparison. We identi-
fied diagnostic trephine BM and EM biopsy samples collected
from 2 patients with AML to be used for Visium-based ST profil-
ing and 4 AML patient BMs as validation cohort with the Visium
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gene and protein expression assay (Figure 1A). The patients’
clinical characteristics are summarized in Table S1. Briefly,
one patient, and 83-year-old man, presented with a cutaneous
myeloid sarcoma (sample EM1) and concurrent medullary leuke-
mia (30% myeloblasts, sample BM1), and the other patient, a
42-year-old man had a mediastinal mass (sample EM2) without
histopathologic evidence of medullary AML involvement (2%
myeloblasts, sample BM2) (Figures S1A-S1C). BM1 harbored
mutations in NPM1, DNMT3A, IDH1, IDH2, FLT3, SF3B1, and
KRAS. The targeted mutation panel was not performed for
BM2 or EM2. Both patients had diploid cytogenetics.

We tested 2 Visium-based assays: version 1 (v1), and version
2 (v2) (Methods) using all 4 patient samples (BM1, BM2, EM1,
and EM2) concurrently. The pre-library RNA traces (DVaqq val-
ues) were 39% or higher for all samples except EM2 (24%)
(Figures S1D-S1F). For BM1 and BM2, the post-library DNA
traces in v1 (24% and 29%) were markedly lower than those
in v2 (89% and 91%, respectively) which precluded further se-
quencing of the v1 BM libraries, whereas for EM1 and EM2,
the post-library DNA traces in v1 (87% and 83%, respectively)
were similar to those in v2 (88% and 91%, respectively)
(Figures S1E, S1G, and S1H). These findings suggest that Vis-
ium v2, which includes automated tissue transfer, performs
more reliably than v1 with BM tissues, even those with low
pre-library DVasqo values (Methods). Also, v2 detected signifi-
cantly more genes than v1 did (Figures S1I-S1M). However,
spatial correlation between the Visium gene and protein expres-
sions was weak, primarily due to low quality of the protein assay.
(Figure S1N). To assess whether the structural integrity of bone
regions was maintained during tissue processing, we overlaid
the image of the BM section on the Visium slide with the image

Figure 1. Comparative spatial multi-omics analysis of acute myeloid leukemia patients’ bone marrow and extramedullary tissues

(A) Schematic representation of the study workflow. Paired bone marrow (BM) samples (BM1 and BM2) and extramedullary (EM) samples (EM1, from skin; and
EM2, from lymph node) from 2 newly diagnosed patients with acute myeloid leukemia (AML) (PT1 and PT2) were fixed in formalin and embedded in paraffin (FFPE)
and then sectioned for use in Visium assays (v1 and v2), and Opal multiplex fluorescent immunohistochemistry (mfIHC). The Visium spatial transcriptomics (ST)
results were validated using GeoMx digital spatial profiling (DSP) with tissue microarrays (TMAs) of samples from 3 newly diagnosed patients with AML (PT3, PT4,
and PT5). An additional 4 AML bone marrow samples that performed the Visium gene and protein expression assay are used as a validational cohort (PT6, PT7,
PT8, and PT9). Image created with BioRender (https://biorender.com).

(B) Uniform manifold approximation and projection (UMAP) plot showing our reference map consisted of 79,029 cells collected from 9 healthy BM donors and 7
patients with AML with diploid cytogenetics to match the patient cytogenetic profiles, and included both newly generated scRNA data and previous works. This
map consisted of 21 cell types, including T cells (CD4* and CD8* naive, effector, and memory T cells, T regulatory [Treg] cells, and unconventional T cells), other
immune cells (Natural killer [NK] cells, B cells and plasma cells), hematopoietic progenitors (Hematopoietic stem cells [HSCs], common lymphoid progenitors
[CLPs], granulocyte-monocyte progenitors [GMPs]), myeloid cells (megakaryocytes/platelets, monocytes, early and late erythroid cells, conventional and
plasmacytoid dendritic cells) and leukemic (AML) cell populations.

(C) Immunohistochemical staining of CD11¢c, MPO, and CD3e on BM1 sections that were used for histopathological annotation. The scale bar for the main tissue
panels represents 1 mm. The scale bar for the zoomed-in panels, corresponding to the boxed regions, represents 100 pm.

(D) Unsupervised clustering and pathology annotation for the projected spatial map of BM1, revealing 3 distinct regions with an adjusted rand index (ARI) of 0.46.
(E) Spatial deconvolution of BM1 tissue, showing erythroid and AML cell populations, with CD11c¢ immunohistochemistry (IHC) overlaid on an image of hem-
atoxylin and eosin (H&E)-staining. The dotted red lines represent regions enriched for the erythroid cell population; dotted black lines, regions enriched for the
AML cell population; and solid lines, regions that overlapped with other tissue sections.

(F) Heatmap of Z score normalized canonical markers in pathology annotations, with matching unsupervised cluster distributions represented as a pie chart.
HBB, HBD, HBA2, GATA1/2 are erythroid genes and ST100A12, FCGR3A, CD14, MS4A7, and, CD33 are monocyte/leukemic genes.

(G) Representative overlay of Visium H&E staining with Opal mflIHC and the generated spot-level data for CD33, CD71, CXCL12, CXCR4, CD68, and IL-6. Boxes
illustrate magnified regions showing concordance between transcript-level (Visium) and protein-level (Opal) signals at the spot level.

(H) Phenotype staining on near-adjacent tissue sections for markers of leukemic (CD33), monocytic (CD68), and erythroid (CD71) populations. DAPI was used as
a nuclear counterstain. The spatial distribution of these markers corroborates ST-based spot deconvolution. Scale bars: 1 mm (whole-slide panels) and 100 pm
(selected region panels).

(I) Box and spatial plots of mfIHC staining intensities for phenotypic markers across ST-defined clusters in BM1, highlighting the enrichment of leukemic and
monocytic populations in cluster 3 and that of erythroid populations in cluster 2 at BM1. Scale bars: 1 mm (whole-slide panels) and 100 um (selected region
panels). ns, not significant. ****p < 0.0001, Wilcoxon rank-sum test.
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Figure 2. Spatial multi-omics profiling identifies leukemic infiltration and tissue composition in extramedullary acute myeloid leukemia
samples

(A) Unsupervised clustering of the extramedullary sample EM1 into 3 spatial clusters (left) compared against the pathology-based annotation (right; indicating a
composition of leukemia, dermis, epidermis, and gland). The adjusted rand index (ARI; 0.51) reflects moderate agreement between the clusters and pathology
annotations.

(B) Spatial deconvolution scores obtained using the SpaCET algorithm show EM1’s malignant cell distribution overlaid on the hematoxylin and eosin (H&E) image.
(C) Heatmap of canonical marker expression in EM1 regions, validating transcriptional segregation and matching pathologist-defined regions. Markers of leu-
kemic populations and dermis regions show shared expression profiles. Unsupervised cluster overlap is represented as pie charts, with pathology annotation.
(D) Phenotypic staining (Opal multiplex immunofluorescent) on near-adjacent sections validating the spatial distribution of CD33 (malignant cells), CD68, and
CD71, which is consistent with the Visium malignant signature (spot-level) and CD68 and CD71 expression patterns. Scale bars: 1 mm (whole-slide panels) and

100 pm (selected region panels).

of the H&E-stained section. Indeed, spots in bone trabeculae
areas, which usually have low cell abundance and a tendency
to come off during tissue processing, were still maintained
(Figure S10). Overall, the v2 data demonstrated superior quality
compared to v1, largely due to the automated tissue transfer ap-
proach, which preserved tissue integrity and thereby facilitated
successful downstream analysis.

A known limitation of Visium is that multiple cells can occupy
the same spot. Therefore, we utilized our in-house generated
scRNA-seq BM reference data'®'® (Figure 1B) to deconvolve
individual spots (spatial regions) using a probabilistic label
transfer workflow. We next conducted shared nearest neighbor
(SNN) modularity optimization-based unsupervised cluster-
ing."” The resulting cluster labels were then compared to the
tissue annotations established by 2 independent hematopa-
thologists by overlaying the Visium slides with the H&E— and
clinical IHC-stained slides (Figures 1C, 1D, S2A, and S2B). In
BM1, the SNN-based clustering identified 3 distinct clusters.
Regions were defined as “mixed” (Region 1), “erythroid-en-
riched” (Region 2), and “monocytic/leukemia-enriched” (Re-
gion 3) (Figure 1E). The results aligned with differentially ex-
pressed genes in these regions and canonical markers of
erythroid cells (HBB, HBA2, GATA1, and GATA2), monocytes
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(S100A12, FCGR3A, CD14, and MS4A7), and myeloid cells
(CD33) (Figure 1F, Table S2). To further confirm the deconvolu-
tion-based spot annotation, we performed mflHC on near-adja-
cent tissue sections, enabling spatial proteomic analysis at the
single-cell resolution (Figure S2D). To overcome the BM
tissues’ high autofluorescence due to bone components and
fixation, we applied light-based quenching'® and manually ex-
cluded these areas in downstream analyses (Figure S2E). The
mflHC data were then aligned with the corresponding Visium
samples for spot level integration (Figure 1G). Using the pheno-
typic markers — CD68 (for monocytic populations), CD71 (eryth-
roid cells), and CD33 (leukemic populations) — we validated
our annotation approach. There was a consistent positive
correlation between deconvolved cell types and protein inten-
sities compared to single gene-protein correlations in EM
(Figure S2F). The cluster-based distribution of protein expres-
sion mirrored the ST data; in BM1, cluster 3 was enriched for
leukemic and monocytic populations, and cluster 2 was en-
riched for erythroid cells (Figures 1H and 1l). In BM1, the
most abundant cell type was AML cells, followed by mono-
cytes, whereas in BM2, late and early erythroid cells, along
with GMPs, were most common (Figure S2G). Compared with
BM2 (no morphologic leukemia detected), BM1 (~30%
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Figure 3. Spatial heterogeneity of acute myeloid leukemia populations in bone marrow and extramedullary tissues

(A) Spatial map of the bone marrow sample BM1 showing spots with high leukemic scores (HLS; above the median acute myeloid leukemia [AML] deconvolution
score; >0.15; orange) and low leukemic scores (LLS; below the median AML deconvolution score; <0.15; dark blue).

(B) Stacked bar plot of the cluster-based distribution of HLS and LLS spots in BM1.

(C) Volcano plot of the differential co-localization of cell populations within HLS and LLS spots of all BM samples. Deconvolution scores were compared using the
Wilcoxon rank-sum test.

(D) Spatial deconvolution of monocytes, and granulocyte-monocyte progenitors (GMPs) in HLS spots in BM1 (top) and spatial deconvolution of late erythroid cells
and CD8* naive T cells in LLS spots in BM1 (bottom).

(E) Boxplots of deconvolution scores for monocytes, GMPs, late erythroid cells, and CD8" naive T cells across the 3 unsupervised clusters in BM1. Median values
are shown as white dots on black lines. *p < 0.01, ***p < 0.0001, Wilcoxon rank-sum test.

(legend continued on next page)
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leukemic blasts) had a slightly higher prevalence of effector and
memory T cell populations but a lower abundance of erythroid-
lineage populations.

EM tissues included epidermis, dermis, germinal centers, and
glands as expected due to the cutaneous nature of the EM dis-
ease. Unsupervised clustering segmented EM1 into 3 distinct
clusters, which mostly overlapped with histopathological annota-
tions, with the exception of glandular tissue glandular tissue an-
notations (adjusted rand index = 0.51) (Figure 2A). We then ap-
plied the spatial cellular estimator for tumors (SpaCET)
algorithm,'® which is used in the spatial analysis of non-osseous
solid cancer spatial analysis, to identify the leukemic regions
(Figure 2B, STAR Methods). Deconvolution results were con-
firmed by comparing them with the histopathologic annotations
on digital images of H&E staining of the same slide. Macrophages
were the predominant predicted cell type in EM1, while cancer-
associated fibroblasts and endothelial cells exhibited the highest
abundance in EM2 (Figure S2H). Tissue-specific markers and dif-
ferentially expressed genes validated the transcriptional segrega-
tion, revealing dermis infiltration by leukemic cells’ infiltration
of the dermis in EM1, and confirmed the consistency of the
unsupervised clusters with the pathologist-defined regions
(Figures 2C and S2I; Table S8), which was also validated by
mflHC (Figure 2D). These results support the use of deconvolution
for spot-level annotation, enabling further downstream analysis.

Spatial heterogeneity of cell populations in bone marrow
and extramedaullary tissues in patients with acute
myeloid leukemia

We categorized each spot as having a high leukemic score
(HLS; above the median AML deconvolution score) or a low leu-
kemic score (LLS; below the median AML deconvolution score)
(Figures 3A and S3A; Table S4). In BM1, cluster-based analysis
showed that HLS spots were about 14% more frequent than
LLS spots in cluster 3, whereas LLS spots were 20% more fre-
quent than HLS spots in cluster 2 (Figure 3B). Monocytes
and GMPs were predominantly associated with HLS spots in
the BM environment (Figures 3C, S3B, and S3C). In addition,
neighborhood analysis further showed that these cell types
were also enriched in the immediate surroundings of HLS spots
(Figure S3D). Monocytes were primarily in cluster 3, whereas
GMPs were enriched in all 3 spatial clusters. CD8" naive
T cells were found throughout all clusters but had a higher spa-
tial concentration in cluster 1. In cluster 2, late erythroid cells
were predominant, and this region showed the lowest propor-
tion of HLS-spots (Figures 3D and 3E). In EM1, immune cell pop-
ulations were co-localized. For instance, macrophages, which
had the highest abundance in EM1, had strong co-localization
with classical dendritic cells (Pearson correlation coefficient
[r] = 0.67) and were associated with cancer-associated fibro-
blasts (r = 0.37) (Figure 3F), particularly in the tumor-infiltrated
dermis region (Figure 3G).

iScience

Inferred pathway analysis reveals inflammatory niches
and region-specific signatures in bone marrow and
extramedullary tissues from patients with acute myeloid
leukemia

We next compared the regulatory programs, distinguishing HLS
spots from LLS spots (Figures S3E and S3F). Several genes
involved in immune regulation, inflammasome activity, and tu-
mor progression, such as CD70, TMEM176B, TP53INP2, and
TNFSF13B,%°?* were significantly enriched in the HLS spots in
BM1, and these same genes were also highly expressed in the
EM leukemic regions of the same patient (Figure S3G). Differen-
tial expression analysis between BM HLS spots and EM malig-
nant regions revealed enrichment of erythroid-lineage differen-
tiation genes characteristic of low-cycling progenitors (e.g.,
HEMGN, KLF1, and ALAS2), whereas EM spots preferentially
expressed extracellular matrix and EMT-associated genes
(e.g., CIDEA, PLIN5, and CLMP) (Figure S3H). Pathway profiling
further demonstrated that the paired BM and EM samples
from each patient shared common molecular signatures
(Figure S4A). Forinstance, in PT1, pathways related to inflamma-
tion (e.g., IFNa, IFNy, inflammatory response, and TGF-f path-
ways) and energy metabolism (e.g., oxidative phosphorylation
and glycolysis pathways) were upregulated in both BM1 and
EM1, whereas these were relatively downregulated in both
BM2 and EM2. We also observed prominent epithelial-mesen-
chymal transition (EMT)-like programs linked to neoplastic mi-
gration and trans-differentiation in the EM1 and EM2. Notably,
the profiles of cluster 3 of BM1, particularly those involving in-
flammation-related pathways, closely matched those of the leu-
kemic cluster of EM1 (Figure S4B).

Dysregulated inflammatory pathways in the BM microenviron-
ment contribute to leukemogenesis and leukemic blast mainte-
nance in AML.%>*® We thus defined a composite inflammation
score using inflammation-related hallmark pathways and then
clustered the spatial data using Jenks natural breaks optimiza-
tion (STAR Methods, Figures 4A and S4C). When comparing
only high-inflammatory regions, the EM site revealed greater in-
flammation (Figure S4D). Among the pathways constituting the
composite inflammation score, IFN-y signaling was specifically
elevated in EM, whereas only the complement pathway showed
higher activity in BM (Figure 4B). As expected, cluster 3 in BM1
and cluster 1 in EM1 exhibited the highest inflammation scores,
which is consistent with the leukemic enrichment in these clus-
ters (Figure 4C). To further explore the spatial inflammatory path-
ways, we performed mflHC for IL-6, a key inflammatory marker,
and found similar spatial patterns of IL-6 expression in adjacent
regions (Figure 4D). Furthermore, for both BM1 and EM1, the
IL-6 staining intensities were positively correlated with the com-
posite inflammation score (Figures 4E and S4E).

Given the association between high inflammation and AML en-
richment, we next sought to determine whether this highly in-
flammatory niche influences T cell states across bone marrow

(F) Correlation heatmap of cell populations in the extramedullary sample EM1, highlighting significant co-localization between macrophages and classical
dendritic cells (cDCs).Tgpm, effector memory T cells; Tem, central memory T cells; NK, natural killer cells; pDC, plasmacytoid dendritic cells; CAF, cancer-as-

sociated fibroblasts. ***r > 0.7, **r > 0.5, Pearson absolute correlation.

(G) Spatial mapping of macrophage and cDC spots in EM1, showing their co-localization in tumor-infiltrated dermis clusters (clusters 1 and 2). *p < 0.05,

**p < 0.01, **p < 0.001, ***p < 0.0001, Wilcoxon rank-sum test.
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Figure 4. Inflammatory microenvironment analysis reveals region-specific signatures in bone marrow and extramedullary tissues from
patients with acute myeloid leukemia

(A) Distribution of spatial inflammation classes in BM1 and EM1, based on composite inflammation scores from inflammation-related hallmark pathways (In-
flammatory response, IL6/JAK/STAT3 signaling, TNF-o/NF-kB signaling, IFN-y response, IFN-a response, Complement, IL2/STAT5 signaling). Classes were
defined using Jenks’ natural breaks optimization.

(B) Mean activity comparison of individual inflammatory related pathways in spots with high-inflammatory activity revealed the highest activity of IFN-y response
in EM tissue. Complement pathway activity is higher in BM1 when compared with the EM1 inflammatory niche. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001,
Wilcoxon rank-sum test.

(C) Boxplots of inflammation scores across the 3 clusters in BM1 (left) and EM1 (right). Each cluster displays significantly different levels of inflammatory activity;
leukemia-enriched cluster 3 in BM1 and cluster 1in EM1 have higher inflammation scores. *p < 0.05, **p < 0.01, ***p < 0.001, ***p < 0.0001, Wilcoxon rank-sum
test.

(D) IL-6 staining (Opal multiplex fluorescent immunohistochemistry [mfIHC]) in whole-slide images (left) of BM1 (top) and EM1 (bottom) and corresponding
magnified regions (center), aligned with Visium spot-level composite inflammation score (right). Scale bars: 1 mm (whole-slide panels) and 100 pm (selected
region panels).

(E) Scatterplots showing the correlation of IL-6 protein staining intensity (mfIHC IL-6) with the composite inflammation score in BM1 (left) and EM1 (right). IL-6
levels are higher in high-inflammation regions in both BM1 and EM1.

(F) Dot plot showing the localization of T cell subtypes (exhausted, CD8" dysfunction, senescence, regulatory T cells [Treg]) based on inflammation class in BM1
and EM1.
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and extramedullary sites. Although T cells were relatively scarce
in our spatial profile, deconvolution analysis revealed that T cells
with exhausted phenotypes were generally enriched in high-in-
flammatory regions. However, in BM1 and BM®6, exhausted
phenotypes appeared more prominent in lower inflammatory re-
gions. CD8"* dysfunction and T regulatory cell signatures were
consistently associated with highly inflamed niches across all
samples (Figures 4F, S4F, and S4G).'*'%2” Taken together,
these observations suggest that BM and EM sites in the same
patient can have similar inflammatory programs, which are asso-
ciated with T cell exhaustion within highly inflammatory niches.

Spatial cell communication analysis highlights the
CXCL12-CXCR#4 axis in the inflammatory niche

After defining each cell type based on the deconvolution
score, we performed spatial cell-cell communication analysis
(Figure S5A).2® Among the most prominent signaling interactions,
we identified that strong CXC chemokine family (CXCL) signaling
was present across all subtypes (Figure S5B). For instance, the
CXCL12-CXCR4 axis emerged as a key pathway among AML
cells, GMPs, and monocytes (Figures 5A, S5C, and S5D). Exam-
ining the relationship of the CXCL12-CXCR4 pair within the in-
flammatory niche, we found that both the CXCL12 ligand and
the CXCR4 receptor showed high expression levels in spots
with higher inflammation scores (Figures 5B, S6A, and S6B). To
validate our ST findings, we performed mfl[HC for the CXCL12-
CXCR4 axis (Figures 5C, 5D, S6C, and S6D). In EM1 samples,
both CXCL12 and CXCR4 demonstrated spatial concordance
between gene expression and protein localization. In BM,
CXCL12 showed high concordance, while CXCR4 exhibited
minimal spatial overlap. In these highly inflammatory regions,
the PIBK/AKT/mTOR pathway, a downstream target of the
CXCL12-CXCR4 axis, was strongly correlated with the co-ex-
pression of CXCL12-CXCR4 (Figures 5E and S6E-S6H).?° This
pathway’s ability to directly induce trans-differentiation aligns
with our observation of elevated epithelial-mesenchymal transi-
tion (EMT) programs in these areas (Figures S6l and S6J).

To examine whether this mechanism was linked to the EM
sites, we assessed the spatial expression of CXCL12 and
CXCR4 in EM1. CXCR4 was abundantly expressed throughout
the tissue and positively correlated with the composite inflam-

¢? CellPress

OPEN ACCESS

mation score (Figure 5F), and spatial proteomics demonstrated
increased CXCR4 protein levels in the inflammatory regions of
EM1 (Figure 5G). By contrast, CXCL12 levels were elevated in
the inflammatory regions of BM1 but were more diffusely distrib-
uted in EM1 (Figures S6K and S6L). Notably, both PISK/AKT/
mTOR signaling and trans-differentiation programs were active
in the highly inflammatory regions of EM1 (Figure 5H).

Deconvolution of leukemia-enriched spots reveals the
localization of acute myeloid leukemia cells in different
differentiation states within inflammatory and endosteal
niches

We next applied linear mixed model annotation®° to classify AML
cells (n = 16,167 cells) based on their scRNA data into their differ-
entiation states relative to the hierarchies in control BM samples
from healthy donors (n = 20,778 cells).®" This classification de-
fined AML cells as: primitive-like (a combination of HSC-like
and common myeloid progenitor/lymphoid-primed multipotent
progenitor-like; n = 5,039), GMP-like (n = 6,432), erythroid-like
(n =1,816), lymphoid-like (n = 55), and committed-like (a combi-
nation of monocyte-like, basophil-like, and dendritic cell-like; n =
2,825) (Figure 6A). We then applied this classification to HLS
spots in BM1 (n = 1,271 spots) (Figure S7A) and leukemic region
spots in EM1 (n = 1,726 spots) (Figures 6B and 6C) to obtain a
spot-level spatial classification of AML hierarchies. Cluster-
based analysis revealed that committed-like populations were
located distally to the primitive-like populations (Figures S7B
and S7C). Deconvolution scores indicated a lower abundance
of primitive-like cells compared to committed-like cells in EM
tissue (Figures S7D and S7E). We found that committed-like
AML populations were concentrated in inflammatory niches
(Figures 6D, 6E, and S7F).

We then applied the SpatialTime pipeline®> (Methods) to
measure the spatial localization of HLS spots, based on the de-
gree of AML differentiation, relative to the trabecular bone re-
gions (Figure 7A; Figure S7G). We found that primitive-like cell
populations were localized proximally to the bone, whereas
GMP- and committed-like populations were localized distally
(Figure 7B). To validate these findings, we performed a GeoMx
DSP whole-transcriptome microdissection-based assay on 13
BM regions from 3 additional patients with AML. (Figures S7H

Figure 5. Chemokine signaling through the CXCL12-CXCR4 axis is linked to inflammatory niches and trans-differentiation in acute myeloid
leukemia

(A) Spatial and chord diagrams of the strength of interactions among acute myeloid leukemia (AML) cells, granulocyte-monocyte progenitors (GMP), and
monocytes through the CXCL12-CXCR4 axis, as predicted by CellChat.

(B) Boxplots of the expression levels of CXCL12 and CXCR4 in BM1, stratified by inflammation class (top), and corresponding spot-level expression maps
(bottom) for the bone marrow sample BM1. Red spots indicate higher expression levels.

(C and D) Whole-slide images of Opal multiplex fluorescent immunohistochemistry (mflHC; left) for CXCR4 (turquoise) and CXCL12 (magenta) overlaid with DAPI
(blue), alongside magnified Opal regions and Visium-based gene expression maps (right) in BM1 (C) and the extramedullary sample EM1 (D). Scale bars: 1 mm
(whole-slide panels) and 100 pm (selected region panels).

(E) Scatterplot shows the positive correlation of the PI3K/Akt/mTOR pathway score with the combined CXCL12-CXCR4 co-expression score (R = 0.50, p < 2.2e-
16). Colors denote inflammation class.

(F) Relationship between CXCR4 expression and inflammation score in EM1 (R = 0.19, p < 2.2e-16). Spatial maps show the distribution of CXCR4 expression.
(G) Boxplots comparing CXCR4 protein signal intensity (mfIHC) across inflammation classes in BM1 (left) and EM1 (right). Spot-level images illustrate higher
CXCR4 signal intensities in high-inflammation areas.

(H) Sections 1 and 2 represent adjacent serial sections of the same EM1 biopsy embedded on a single Visium capture area. Visium ST visualization of PISK/Akt/
mTOR pathway (left) and trans-differentiation pathway (right) activity in these EM1 sections, revealing elevated pathway scores in high-inflammation and leukemic
regions.
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Hierarchical differentiation states of acute myeloid leukemia cells and their distribution across bone marrow and extramedullary

(A) Uniform manifold approximation and projection (UMAP) projection of 16,167 acute myeloid leukemia (AML) cells into different differentiation states: primitive-
like, granulocyte-monocyte progenitor (GMP)-like, erythroid-like and lymphoid-like, and committed-like.
(B) Spatial deconvolution maps of spots with high leukemic scores in the bone marrow sample BM1 showing primitive-like, GMP-like, and committed-like AML

cells.

(C) Spatial deconvolution maps of the extramedullary sample EM1 showing primitive-like, GMP-like, and committed-like AML cells.
(D and E) Violin plots shows the distribution of committed-like AML cells in BM1 (D) and EM1 (E) across inflammation classes.

and S7I). CD34 and CD68 protein markers were used to define
the leukemic regions covering primitive and more differentiated
cells (Figures S7J and S7K). Of note, we also attempted CD3
for T cell classification, but reliable segmentation mask could
not be generated. Congruent with our Visium ST analysis, phe-
notypically primitive-like cells were detected proximal to the
bone, whereas more differentiated cells were predominantly dis-
tal from the bone (Figures 7C and 7D). Taken together, these
findings suggest that AML cells in different states of differentia-
tion localize in distinct niches within the BM.

DISCUSSION

In this study, we demonstrated the feasibility of applying Visium
ST to both medullary and EM AML tissues. By using the v2 assay,
which has automated tissue transfer, we achieved better library
quality, facilitating more robust downstream analyses. We also
integrated our ST data with mfIHC data, illustrating the value of
combining transcriptomic and proteomic information, which rep-
resents a key application of this integration for the Visium ST data
with mflHC in the analysis of AML BM. While next-generation
imaging-based platforms such as Xenium and MERSCOPE offer
higher resolution, they rely on targeted panels that are best
suited for validation.>®> Our approach provides a broad, discov-
ery-oriented snapshot of AML’s spatial landscape. In addition,
we complemented our Visium approach with GeoMx-based

10 iScience 29, 114289, January 16, 2026

DSP to orthogonally validate its features, underscoring Visium’s
potential applicability to other BM malignancies.

Inflammation is a well-established hallmark of cancer,®* and
recent work indicates that inflammatory states shape the immune
microenvironment, are correlated with AML differentiation, and
impact disease progression and chemoresistance.®'%26:3536 |n
our spatial analyses, we classified Visium spots by their inflam-
matory signatures and uncovered distinct “niches” in both BM
and EM tissues. Notably, regions with higher inflammation
hosted AML cells spanning multiple differentiation states and
showed a pronounced association between committed-like
AML cells and inflammatory signals.

We observed that highly inflammatory niches often harbored
AML cells and monocytes, highlighting the CXCL12-CXCR4
axis as a central signaling pathway. CXCL12 binds to CXCR4
and governs AML cell homing, migration, and therapy evasion
in the BM.*"~*° Our EM samples had widespread CXCR4 expres-
sion, suggesting that this pathway may also facilitate leukemic
infiltration beyond the BM.

Downstream of the CXCL12-CXCR4 axis is the PIBK/AKT/
mTOR pathway, which is well known to promote EMT-like pro-
cesses in solid tumors.??*'~*% In our study, EMT-like or trans-dif-
ferentiation signatures were correlated with CXCL12-CXCR4
signaling in inflammatory niches, suggesting a possible mecha-
nism by which AML cells disseminate along the medullary-EM
axis, consistent with recent findings implicating EMT pathways
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Figure 7. Bone proximity analysis reveals the spatial distribution of acute myeloid leukemia cells in different differentiation states

(A) Representative spatial map of SpatialTime calculated distances from trabeculae overlaid with hematoxylin and eosin (H&E) image.

(B) Boxplots show deconvolution scores of primitive-like, granulocyte-monocyte progenitor (GMP)-like, and committed-like acute myeloid leukemia (AML) cells
relative to their distance from bone in Visium data. *p < 0.05, ***p < 0.0001, Wilcoxon rank-sum test.

(C) GeoMx analysis of AML deconvolution in bone marrow regions from 3 patients with AML (PT3, PT4, PT5). D, distal (dark red); P, proximal (dark blue); B, bone
(white). Stacked bar plots represent cell type deconvolution within distal and proximal regions. Scale bars: 250 pm.

(D) Line graphs show proportions of primitive-like and GMP-like cells relative to distance from bone.

in EM AML progression.** These findings warrant further inves-
tigation, particularly in patients with concomitant EM disease.
CXCR4 inhibitors have been evaluated previously in AML. Our
spatial results suggest revisiting CXCL12/CXCR4 targeting with
biomarker guidance and considering combinations with PI3K/
AKT/mTOR inhibitors in inflamed niches.”’

The BM-resident leukemic population closely resembled its
EM-resident counterpart at the transcriptomic level, particularly
within highly inflammatory niches. Genes such as CD70, RAB3D,
and TP53INP2, along with novel markers such as TNFSF13B and
TMEM176B, were upregulated in monocyte-like AML clusters in
both BM and EM samples. This finding suggests a conserved
program across these distinct microenvironments and highlights
candidate targets for further investigation.

The interplay between hematopoiesis and the endosteal niche
maintains the quiescence and self-renewal of HSCs and the
supportive capacity of the BM microenvironment.***° Previous
studies established that HSCs and multipotent progenitors con-
centrate near the bone surface, whereas committed progenitors
and differentiated cells occupy more distal regions.*” Building on
these findings, we used a multimodal ST approach to map AML
differentiation states in the BM. Our analyses indicate that GMP-
like and committed-like AML populations cluster farther from en-

dosteal surfaces, whereas primitive-like cells localize nearer to
the bone, implying that osteoblastic regions may help sustain
AML stemness.

Our study represents one of the first in-depth applications of
ST to paired medullary and EM AML samples. Recent publica-
tions have highlighted the technical challenges and quality con-
trol aspects of performing ST on human BM but have rarely ad-
dressed the extended biological insights that can emerge from
such analyses.® By contrast, we integrated Visium ST with mflHC
and DSP to not only tackle these technical hurdles but also to
delve more deeply into AML’s spatial biology.

Integrating spatial multi-omics with emerging therapeutic
strategies could provide a roadmap for precision interventions
in AML. Spatial mapping of resistance-associated phenotypes,
including immune evasion and inflammatory programs, may
also guide the deployment of targeted immunotherapies in mi-
croenvironmentally and anatomically defined contexts. These
applications underscore the translational relevance of spatial
omics for tailoring therapy to microenvironmental heterogeneity.

In summary, our approach yielded key insights into the roles
of inflammatory niches and the CXCL12-CXCR4-PI3K/AKT/
mTOR axis in AML progression, including the possibility that
the endosteal niche supports more primitive AML populations.
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Studies in larger, more diverse cohorts are necessary to validate
and extend these observations. Nevertheless, our work under-
scores the potential of integrating ST with orthogonal assays
to elucidate AML biology, potentially informing novel therapeu-
tic avenues.

Limitations of the study

Our study had certain limitations. Its small sample size reflects
both the rarity of paired pre-treatment medullary and EM biopsy
samples from patients with AML and the high cost of spatial
assays. Moreover, our scRNA-seq reference data excluded neu-
trophils and mesenchymal stromal cells owing to challenges in
isolating these cell types; in addition, the 55 pm spot size of
the Visium assay can obscure finer details in highly heterogene-
ous tissues such as BM. While we employed a label transfer ap-
proach using scRNA-seq data to infer probabilistic cell-type
scores across Visium spots, the lack of single-cell resolution lim-
its the accurate detection of some populations, including the
stromal cells that were missing in our reference map. To mitigate
these issues, we employed a tailored median absolute deviation-
based filtering method, broad clustering to define intra-sample
niches, validation of cell predictions via H&E staining and IHC
by 2 independent hematopathologists, and the complementary
use of mfIHC and DSP for greater resolution; however, it is im-
portant to note that the mflIHC and Visium datasets were derived
from near-adjacent sections separated by two sequential 5 pm
cuts, which may introduce spatial mismatches and contribute
to imperfect correlation between transcriptomic and protein sig-
nals. In addition, in the four BM samples analyzed, Visium’s dual
gene and protein expression assay, we observed limited gene-
protein spatial correlation, precluding their use for robust pro-
teomics validation. Importantly, tissue procurement vary across
institutions and patients (from time to collection to fixation, de-
calcification methods etc), introducing technical heterogeneity
that may affect RNA quality, spatial resolution, signal intensity,
which is challenging to fully standardizse in studies using pa-
tient-derived samples.
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Materials availability
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Data and code availability

o Data: Visium spatial transcriptomics data is publicly available at GEO:
GSE279576.

® Code: All analysis scripts in this article are available at https://github.
com/abbaslab/2025_Spatial_Profiling_in_Medullary_Extramedullary_
Leukemia

o Additional Information: Any additional information required to reanalyze
the data reported in this article is available from the lead contact upon
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethics statement
This study complied with the Declaration of Helsinki. Collection and use of human materials were approved by the Institutional Re-
view Board of MD Anderson Cancer Center. (Institutional Review Board number: 2022-0576).

Human samples

The study included a total of 9 patients. Bone marrow (BM) and extramedullary (EM) core biopsy samples from 2 AML patients were
used for the primary Visium comparison (BM1, EM1, BM2, EM2), 4 AML patient BMs were used for a validational cohort, and 3 AML
patients were used for GeoMx DSP. The cohort consisted of 5 male and 4 female individuals. Due to the limited sample size within
each group, the influence of sex/gender on the results could not be statistically determined. All patient clinical information is shown in
Table S1.

METHOD DETAILS

Sample preparation and clinical immunohistochemistry

BM and EM core biopsy samples were fixed in formalin and embedded in paraffin. (BM samples were decalcified with 10% formic
acid before paraffin embedding.) Sections (4 pm) were cut for hematoxylin and eosin (H&E) staining and immunohistochemistry (IHC).
For IHC, slides were deparaffinized, rehydrated, and subjected to heat-induced antigen retrieval. The slides were incubated with pri-
mary antibodies against CD11c, MPO, and CD3e for 1 h, incubated with horseradish peroxidase-conjugated secondary antibodies
and 3,3'-diaminobenzidine, and counterstained with hematoxylin.

GeoMx digital spatial profiling

An 8x8 tissue microarray (TMA) was constructed from 12 FFPE bone marrow (BM) biopsies; nine cores were profiled using the
NanoString GeoMx DSP platform. Two cores (AOls 1-3) were excluded due to M6 AML. For selected cores, regions of interest
(ROIls) were annotated both adjacent to and >200 um distal from bone trabeculae and segmented into CD68*, CD34*, and non-mye-
loid AOIs using anti-CD68 (KP1), anti-CD34 (QBend/10), and SYTO13 staining. Anti-CD3 (PC3/188A) was included but failed quality
thresholds and was not used. RNA expression (~18,000 genes) was captured with UV-cleaved barcodes from the Whole Transcrip-
tome Atlas. Data were processed with GeomxTools R package. Low-expressing probes were filtered, followed by Q3 normalization
and log transformation.Myeloid AOls were deconvolved using CIBERSORTx" with a custom reference. Cell types were grouped into
primitive-like, committed-like, and lymphoid-like states. Paired t-tests compared cell-type proportions between proximal and distal
AOIs. Analyses were performed in R (v4.3.0).

Visium spatial transcriptomics

Formalin-fixed, paraffin-embedded BM and EM biopsy samples were processed using the Visium (10x Genomics). RNA quality was
assessed as the percentage of fragments greater than 200 nucleotides (DVsqg). Tissue sections were processed via both the
CytAssist platform (v2 assay; 11 x 11 mm capture areas) and directly placed on Visium slides (v1 assay; 6.5 x 6.5 mm capture areas).
Four BM tissue sections were also profiled with the Visium Human Immune Cell Profiling Panel. Libraries were prepared according to
standard protocols, SPRI-cleaned, quantified with Bioanalyzer and gPCR (KAPA kit), and sequenced on lllumina NovaSeq 6000.
FASTQ files were generated and aligned to GRCh38 using SpaceRanger (v2.0). Tissue morphology was annotated by two expert
pathologists based on H&E and IHC scans (Aperio, Akoya), and mapped to Visium spots via Loupe Browser.

Opal mflHC

Near-adjacent FFPE sections from bone marrow and extramedullary tissues were processed for multiplexed fluorescent IHC using
the Opal system (Akoya Biosciences). Slides were deparaffinized, underwent heat-induced epitope retrieval, and were sequentially
stained with primary antibodies and Opal fluorophores, using horseradish peroxidase and iterative antibody stripping to enable multi-
plexing. DAPI was applied as a nuclear counterstain. Staining was automated on the NanoVIP 100 platform (Biogenex), and slides
were imaged at 0.25 pm resolution using the Phenolmager HT 2.0. Spectral unmixing was performed at acquisition using custom
fluorescence libraries. Unmixed images were aligned to Visium CytAssist reference images using 15-25 anatomical anchor points
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in Visiopharm TissueAlign. A single ROI per tissue was defined after segmenting and excluding bone, artifacts, and empty regions
through a combination of deep-learning-based and manual refinement. Cell segmentation was performed based on DAPI signals
using a U-net model. Marker intensities were smoothed, arcsinh-transformed, and averaged per cell, then aggregated to the Visium
spot level based on spatial overlap. For spatial correlation analysis between transcript and protein signals, Lee’s L statistic was com-
puted using Visium coordinates and a spatial weight matrix based on six nearest neighbors.

QUANTIFICATION AND STATISTICAL ANALYSIS
All statistical analysis information can be found corresponded figure legends.

Filtering and data processing

Spatial spots were filtered by eliminating those not within +3 median absolute deviations of mitochondrial gene content, total oligo-
nucleotide counts, and detected gene numbers. Filtered spots underwent SCTransform normalization in Seurat, followed by principal
component analysis and uniform manifold approximation and projection for dimensional reduction.

Spatial spot deconvolution

Reference scRNA seq data from BM samples from healthy donors (n = 9) and AML patients with diploid karyotype (n = 7) integrated.
Visium BM samples from AML patients deconvolved with this reference by Seurat label transferring method. BM2 sample decon-
volved with scRNA-seq reference contain only healthy compartments. Spatial spots were classified as having a high leukemic score
(HLS; higher than the median AML deconvolution score) or low leukemic score (LLS; lower than the median AML deconvolution
score). Due to structural differences EM samples were deconvolved with the SpaCET (Spatial Cellular Estimator for Tumors)® Pan
Cancer dictionary to identify cell types. AML cell states were further resolved using transfer learning.

Spatial analyses

Differential deconvolution analysis calculated with Wilcoxon rank-sum test between HLS and LLS spots for predicted cell type
scores. Cell labels were assigned to spots based on prediction probabilities and used along with spatial coordinates to infer
ligand-receptor interactions with the CellChat.'? To assess niche proximity, we applied SpatialTime pipeline.*® Trabecular bone re-
gions were manually contoured, and the shortest distance from each Visium spot to the nearest bone surface was computed. Dis-
tances were scaled from 0 (adjacent) to 1 (furthest), and spots were classified as proximal or distal based on the median distance
value. Spatial trends in cell states and pathway activity were analyzed relative to this spatial gradient.

Pathway analysis and inflammatory niche classification

Curated gene sets (hallmark) obtained from molecular signatures database and these gene sets were individually scored for each
sample using the AUCell pipeline.” Spatial coordinates and pathway scores for inflammatory pathways (IL6/JAK/STAT3 signaling,
IFNy Response, IFNa Response, TNFa/NF-xB signaling, complement, and IL2/STAT5 signaling) were extracted, normalized and a
composite inflammatory score was calculated as the mean of these normalized scores. To stratify and define inflammatory niches,
we applied the Jenks Natural Breaks classification method to divide the composite inflammation score into four categories (Low,
Medium-Low, Medium-High, and High). This method optimally partitions continuous data by minimizing intra-class variance and
maximizing inter-class variance, making it suitable for spatially skewed distributions without assuming cluster symmetry and size
balance.
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