
PI3K-Seeker: A Machine Learning-Powered Web Tool to Discover
PI3K Inhibitors
Published as part of ACS Omega special issue “Chemistry in Brazil: Advancing through Open Science”.

Francisca Joseli Freitas de Sousa, Dinler Amaral Antunes, and Geancarlo Zanatta*

Cite This: ACS Omega 2025, 10, 57255−57266 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Phosphatidylinositol 3-kinases (PI3Ks) play a crucial role in human metabolism, and their dysregulation contributes
to the development of several metabolic disorders, including cancer. Despite advances in experimental high-throughput screening,
discovering new therapeutic agents remains challenging and costly. In this study, we developed PI3K-Seeker, a web server based on a
two-stage prediction process to find new PI3K inhibitors. The first stage eliminates nonbinders, while the second refines the
selection, leaving only molecules with a high probability of being potent inhibitors. Models were trained using the XGBoost
algorithm and PubChem fingerprints extracted from distinct datasets. In the first stage of classification, the model showed impressive
metrics (MCC: 0.917, AUC-ROC: 0.993, and ACC: 0.917). In the second stage, the data enhancement, the model trained also
performed exceptionally well (MCC: 0.939, AUC-ROC: 0.956, and ACC: 0.994). The PI3K-Seeker is a user-friendly web server
suitable for a large set of compounds, available at http://www.ufrgs.br/labec/pi3k-seeker/.

1. INTRODUCTION
Phosphatidylinositol 3-kinase (PI3K) is an essential family of
enzymes involved in cell signaling and is responsible for an
extensive range of metabolic processes. Under normal
physiological conditions, the PI3K/Akt/mTOR pathway
regulates cell growth and controls the cell cycle. In abnormal
situations, the overactivation of PI3K is associated with various
metabolic disorders and is also implicated in oncological
processes.1−4

Class IA PI3Ks (PI3Kα, PI3Kβ, and PI3Kδ) are heterodimers
composed of a catalytic subunit (p110α, p110 β, or p110 δ) and
a regulatory subunit (p85). The regulatory subunit binds to
phosphorylated tyrosine residues on activated receptor tyrosine
kinases (RTKs). This interaction recruits the enzyme to the
plasma membrane and activates the catalytic subunit, which
then phosphorylates phosphatidylinositol 4,5-bisphosphate
(PIP2) to generate the second messenger phosphatidylinositol
(3,4,5)-trisphosphate (PIP3).5 Class IB PI3K (PI3Kγ) is
activated downstream of G protein-coupled receptors
(GPCRs). Their regulatory subunits (p101) bind directly to
Gβγ subunits released from activated G-proteins, recruiting and
activating the catalytic subunit at the membrane (Figure 1).6

PI3K class I isoforms are more studied due to their
relationship with various diseases. For instance, changes in the
activity of PI3Kα have been widely associated with multiple

types of cancers, particularly solid tumors, as well as PIK3CA-
related overgrowth spectrum (PROS) and activated phosphoi-
nositide 3-kinase delta syndrome (APDS).7−10 Meanwhile,
PI3Kδ and PI3Kγ isoforms are more related to immune system
pathologies.11 Nonredundant functions associated with PI3Ks
are also related to other processes directly or indirectly linked to
malignancies and can have different impacts on specific types of
cancers.12,13

Despite its importance, there is a limited number of PI3K
inhibitors approved by Food and Drug Administration (FDA).
Several factors contribute to this, including the incidence of
serious adverse events associated with these compounds. Even
among the approved inhibitors, poor tolerability, intrinsic and
acquired drug resistance, and feedback signaling loops that
counteract PI3K inhibition often led to treatment discontinua-
tion.14 In addition, the design of new PI3K inhibitors involves
several challenges, with their highly conserved ATP-binding

Received: July 24, 2025
Revised: November 6, 2025
Accepted: November 10, 2025
Published: November 18, 2025

Articlehttp://pubs.acs.org/journal/acsodf

© 2025 The Authors. Published by
American Chemical Society

57255
https://doi.org/10.1021/acsomega.5c07315

ACS Omega 2025, 10, 57255−57266

This article is licensed under CC-BY 4.0

D
ow

nl
oa

de
d 

vi
a 

17
2.

56
.2

5.
24

2 
on

 F
eb

ru
ar

y 
16

, 2
02

6 
at

 1
5:

52
:0

8 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/curated-content?journal=acsodf&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Francisca+Joseli+Freitas+de+Sousa"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dinler+Amaral+Antunes"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Geancarlo+Zanatta"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsomega.5c07315&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?fig=abs1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?fig=abs1&ref=pdf
http://www.ufrgs.br/labec/pi3k-seeker/
https://pubs.acs.org/doi/10.1021/acsomega.5c07315?fig=abs1&ref=pdf
https://pubs.acs.org/toc/acsodf/10/47?ref=pdf
https://pubs.acs.org/toc/acsodf/10/47?ref=pdf
https://pubs.acs.org/toc/acsodf/10/47?ref=pdf
https://pubs.acs.org/toc/acsodf/10/47?ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acsomega.5c07315?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://http://pubs.acs.org/journal/acsodf?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


pockets as one of the main obstacles. The PI3Kα, for example,
can develop resistance to inhibition through functional
compensation, or “feedback loops” via overexpression of
tyrosine kinase receptors (RTKs). Other physiological changes
resulting from the inhibition of this isoform may include
disturbances in glucose metabolism. The use of PI3K inhibitors
is associated with serious side effects resulting from their
administration, such as hyperglycemia, diarrhea, nausea,
pneumonia, fatigue, asthenia, skin rashes, among others, which
lead to discontinuation of use or clinical trials.15

New technologies focused on drug discovery have been
emerging, boosted by the increase in computational power and
the advances in artificial intelligence (AI) approaches.16 In
addition, the increased number of public databases of chemical
and biological information including PubChem and ChEMBL
facilitates the training of new models, making them a valuable
source for AI applications in drug discovery.17,18 In this way, it is
now possible to quickly scan large databases of various chemical
components and use them as pharmacophores for drug design or
repositioning.19,20

Among initiatives based on AI is the use of quantitative
structure−activity relationship (QSAR) studies for the identi-
fication of ligands for specific targets. For instance, Bi et al.
(2022) proposedmachine learningmodels that utilize molecular
fingerprinting to classify DYRK1A inhibitors, which are
therapeutic targets for neurodegenerative diseases.21 Similarly,
Yu et al. (2023) applied a comparable approach to CYP17A1, a
target for developing anticancer molecules.22 The same
approach was used by Yu and colleagues to identify LpxC
inhibitors. In this work, they combined various fingerprints, such
as MACCS and PubChem, to create classification models that
predict the inhibitory activity of LpxC inhibitors.23 Additionally,
Srisongkram and colleagues (2023) employed a combination of
fingerprints with an extreme gradient boosting (XGB)-QSAR
model for high-throughput screening in drug design and for the
identification of KRASg12c inhibitors.21−24

Attempts to developmodels for drug discovery targeting PI3K
have also been made. In this context, Zhu and colleagues25 used
a machine learning virtual screening approach to discover a
novel selective inhibitor of PI3Kγ. Their study utilized a set of
structures and ligands of the PI3Kγ isoform to construct a Naiv̈e

Bayesian Classification (NBC) model, employing a binary
classification (1 for inhibitors and 0 for noninhibitors) and
efficacy measured using the AUC-ROC curve (0.906). Although
still an interesting approach to identify selective ligands, their
approach was limited only to the isoform gamma. Recently,
Kang and colleagues26 have expanded the toolbox by developing
a deep learning model, called MVGNet, which was reported to
predict inhibitory activity by classifying molecules into two
categories, active and inactive, across all four PI3K isoforms (α,
β, γ, and δ). While their model represents a significant
advancement in addressing isoform selectivity, it still faces
limitations in effectively handling the early stages of virtual
screening, particularly in rapidly and accurately distinguishing
PI3K binders from nonbinders within large and diverse chemical
libraries. Therefore, despite these promising advances, there is
still room for improvement, especially at the early stages of
virtual screening, where models that combine high accuracy,
broad isoform coverage, and the ability to efficiently process
large-scale compound libraries are needed. Developing such
models would greatly enhance the identification and prioritiza-
tion of novel PI3K-targeting compounds in drug discovery
pipelines.

In this work, we present PI3K-Seeker, a fast and user-friendly
web server that classifies compounds as active or inactive against
isoforms belonging to the PI3K class I. This tool was
implemented using a two-stage pipeline based on XGB27

machine learning classification models. Each model was
evaluated in terms of accuracy, precision, sensitivity, the
Matthews correlation coefficient (MCC), and ROC AUC. As
proof-of-concept, each stage of the tool was tested using real
data as input, showing strong predictive performance and
demonstrating its potential to accelerate the identification of
novel PI3K inhibitors.

2. METHODOLOGY
2.1. Datasets. To facilitate the development and evaluation

of machine learning models for the identification of PI3K class I
ligands, we compiled three curated molecular sets: (set 1)
experimentally confirmed PI3K binders, (set 2) structure-based
decoys generated using a set of active inhibitors of PI3K as input,
and (set 3) compounds as nonbinders of PI3K isoforms.

Figure 1. Overview of the PI3K class I pathway. The class IA PI3Ks (PI3Kα, PI3Kβ, and PI3Kδ) are activated downstream by Tyrosine Kinases
(RTKs). In contrast, class IB (PI3Kγ) is activated downstream by G protein-coupled receptors (GPCRs). The catalytic subunit of PI3K
phosphorylates phosphatidylinositol 4,5-bisphosphate (PIP2) to generate the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3).
Additionally, the second messenger can be regenerated to PIP2 by the phosphatase and tensin homologue (PTEN).
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Following these sets, three distinct datasets were constructed.
Dataset1 comprises known binders (set 1) and nonbinders (set
3), providing a biologically grounded binary classification
scenario. Dataset2 consists exclusively of the positive class (set
1) as a reference for supervised or one-class modeling
approaches. Dataset3 integrates binders (set 1) and generated
decoys (set 2), enabling evaluation of the capacity of the model
to discriminate between actives and structurally plausible, yet
presumed inactive compounds. Therefore, these datasets offer a
robust framework for training and benchmarking ligand-based
virtual screening algorithms across varying degrees of class
separability and chemical diversity.

Set 1 was built based on data from the ChEMBL Data Web
Services;28 source IDs were 4005, 2111367, 3130, 2111432,
3145, 3038510, 3267, and 3559703. It comprised 22,175
molecules obtained by filtering based on IC50 values and limited
by species (Homo sapiens) and with single protein and protein
complex data. Bioactivity was retrieved using IC50 values
(standard unit (nM)), andmissing IC50 data or duplicate values
were eliminated. For clarity, IC50 values were converted into
pIC50 (pIC50 = −log 10(IC50)) and molecules were labeled as
“active” when pIC50 > 6 or “inactive” when pIC50 < 5.
Following data curation, 9028 unique compounds were
obtained, comprising 7965 active and 1063 inactive molecules.
Set 2 was built by generating decoys using the DUDE-Z server29

In total, 11,312 new inactivemolecules were generated using this
approach based on 404 active molecules from set 1. Set 3 was
made of 26,019 molecules using data from ChEMBL,
comprising inhibitors of apoptosis protein 3 (IAP3/BIRC3),
protein kinase C beta (PKCβ), C−C chemokine receptor type 5
(CCR3), MAP kinase ERK2 (MAPK/ERK2), vascular
endothelial growth factor receptor 2 (VEGFR2), Janus kinase
(JAK2), hexokinase type IV, and mechanistic target of
rapamycin (mTOR). mTOR inhibitors with dual activity (e.g.,
PI3K/mTOR) were removed. The molecules obtained from
ChEMBL and decoys were processed using a PaDEL descriptor

before calculating the fingerprints, with salt removal, stand-
ardization of the nitro group, and tautomer standardization.
2.2. ScaffoldDiversity and Chemical Space.We used the

RDKit to process the chemical structures of the molecules and
obtain Bemis−Murcko scaffolds for active and inactive
compounds. Properties such as molecular weight (MW),
number of hydrogen acceptors and donors (HBA/HBD),
topological polar surface area (TPSA), rotatable bond count,
carbon sp3 fraction (FracCsp3), ring count, aromaticity, and
violations of Lipinski’s rule of five were also calculated.30,31

2.3. Extracting Fingerprints. The molecular fingerprints
used to extract features from all datasets were EState (79 bits),
Molecular ACCess System (MACCS, 116 bits), and PubChem
(881 bits), and PaDEL Descriptor software generated the
fingerprints.32

2.4. Machine Learning Models.We compared the XGB27

algorithm with three others: two machine learning algorithms
(Support Vector Machine, SVM, and Random Forest, RF) and
one deep learning algorithm (Graph Attention Network, GAT).
SVM is effective for solving classification problems by finding a
hyperplane that separates different classes.33 Random Forest, on
the other hand, utilizes an ensemble learning approach that
combines multiple decision trees. In classification tasks, it
determines the outcome based on a majority vote among those
trees.34 GAT, a subtype of GraphNeural Network, allows for the
identification of important nodes beyond just their structural
connections within the graph. This capability helps capture
complex relationships based on the content of the nodes as
well.35

We assessed metrics such as accuracy, precision, recall, F1-
score, Matthews Correlation Coefficient (MCC), and ROC
AUC (area under the curve of the receiver operating
characteristic). We divided each dataset into a training set
(80%) and a test set (20%). We performed a comprehensive 10-
fold cross-validation to mitigate the possibility of overfitting.36

The hyperparameter values for each method trained are

Figure 2. Flowchart showing the path from data curation to model selection.
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described in Supplementary Table S1, while the evaluation
metrics are provided in Supplementary Table S2.
2.5. Assessment of Machine Learning and Fingerprint

Outcomes. Furthermore, the models were evaluated to assess
their performance across various metrics, including accuracy,
precision, recall, F1-score, ROC AUC, and the Matthews
Correlation Coefficient (MCC). These metrics were computed
for test sets to comprehensively gauge the efficacy of each
model.37,38 In addition, the SHapley Additive exPlanations
(SHAP) tool helped to understand how the model interprets
data.39

To define an applicability threshold, we define an applicability
domain using the LOF (local outlier factor) method. LOF
stands out for comparing a point with its immediate
neighborhood, being more sensitive to outliers that global
methods would not notice.40

2.6. Machine Learning-PoweredWeb Tool to Discover
PI3K Inhibitors�PI3K-Seeker. The PI3K-Seeker server was
built to analyze the input data in two stages. In the first stage, it
employs ML model 1, which was trained with dataset1 and
eliminates non-PI3K binders. In the second stage of the analysis,
ML model 2, which was trained with dataset3, classifies the
remaining compounds as weak or strong binders, making the
final prediction. PI3K-Seeker initially works with a CSV file
provided by the users that includes a column naming the
molecules and the molecules themselves in the SMILES format.
After submitting the input files, PI3K-Seeker does the
predictions for each molecule and returns it as “active” or
“inactive”. All data used in the training of the models are
available in the Supporting Information. The process of creating
datasets leading up to the development of models is illustrated in
Figure 2.

3. RESULTS AND DISCUSSION
3.1. ScaffoldDiversity and Chemical Space.We used the

RDKit package to process the chemical structures of the
molecules and obtain Bemis−Murcko scaffolds for active and
inactive compounds. Properties such as molecular weight

(MW), number of hydrogen acceptors and donors (HBA/
HBD), topological polar surface area (TPSA), rotatable bond
count, sp3 carbon fraction (FracCsp3), ring count, aromaticity,
and violations of Lipinski’s rule of five were also calculated.

Scaffold analysis was conducted using the Bemis−Murcko
framework on all molecules included in model training,
categorized as active or inactive. Figure 3A details the frequency
of the five most common scaffolds within the inactive
compounds, with their respective structures on the right. In
contrast, Figure 3B shows the most common scaffolds in the
active compounds. Although fewer in number, the active
scaffolds are structurally more complex than those in inactive
compounds, including motifs such as morpholine, sulfonamide,
and dihydroquinazolin-4-one. The uniform manifold approx-
imation and projection (UMAP) analysis in Figure 3C illustrates
clusters of molecules with similar physicochemical profiles.
Despite the presence of outliers, active and inactive compounds
exhibit considerable overlap, with no clear separation between
the classes, highlighting the importance of applying machine
learning models capable of capturing more subtle patterns.
Details of physicochemical properties are shown in Supple-
mentary Figure S1.
3.2. Machine Learning Models. We tested a different

combination of fingerprints and algorithms. As Figure 4 shows,
the best-performing fingerprint was PubChem for each dataset.
The best-performing algorithms were XGB and SVM. The
complete metrics are presented in Table S2 of the Supporting
Information.

According to Figure 4, when models were trained with
dataset1, XGB, RF, and SVM methods showed superior
performance using PubChem as fingerprint. The use of dataset1
highlights the balance of metrics, all greater than 0.9. GAT did
not perform satisfactorily when compared to the others,
especially in terms of accuracy, F1-score, and MCC. MCC is a
more comprehensive metric because it considers the four
quadrants of the confusion matrix (TP, FN, TN, FP), measuring
the correlation between actual labels and predicted labels.38 The
MACCS fingerprint had good metrics with the SVM and XGB

Figure 3. Scaffold diversity and chemical space. (A) Inactive compound frequency and (B) active compound frequency. (C) UMAP showing
physicochemical descriptors in a 2D representation.
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algorithms, not surpassing PubChem, but better than EState.
Overall, the algorithms performed worst on dataset2, especially
when analyzing MCC values. For EState, from best to worst, the
order was XGB > RF > SVM > GAT; for MACCS, SVM had a
higher MCC value, and the order from best to worst was SVM >
XGB > RF > GAT. Interestingly, all algorithms performed
excellently with dataset3. Despite using approximate values, the
PubChem fingerprint showed the best results overall. Among
the algorithms, XGB and SVM performed exceptionally well.
The results from the XGB were consistent across various
datasets and fingerprints, consistently ranking among the best,
particularly for MCC values. Due to this reliability, we opted to
include XGB in the server pipeline.

To enhance the efficiency and predictive performance of the
platform, we implemented a two-stage virtual screening strategy.
In the first stage, a fast and accurate classification model was
employed to eliminate compounds with a low likelihood of

binding to PI3K, thereby significantly reducing the chemical
search space. This initial filter was built using an XGB model
trained on dataset1, which included both known PI3K binders
and nonbinders. As shown in Table 1, the model exhibited
strong predictive performance and generalizability, making it
well-suited for the initial filtering step.

In the second stage, more computationally intensive analyses
were performed on the subset of compounds retained from the
initial filtering, allowing for a more refined identification of high-
confidence PI3K binders. This stage required a model able to
distinguish not only between binders and nonbinders but also to
capture differences in the predicted binding affinity. To achieve
this, we tested the performance of two XGB models. The first
model was trained on dataset2, which includes only known PI3K
binders, categorized as “active” or “inactive” based on their
pIC50 values. The second was trained on dataset3, which
expanded the negative class by incorporating a large number of

Figure 4. Metrics results of models tested. Legend: SVM (support vector machine), RF (random forest), XGB (extreme gradient boosting), GAT
(graph attention networks), and three fingerprints (EState, MACCS, and PubChem).
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decoy compounds alongside the active ligands from dataset2,
thereby enhancing the capacity of the model to minimize the
prediction of false positives.41

As the model trained on dataset3 outperformed the one
trained on dataset2, it was implemented in the second stage of
the server’s analysis. The improvement obtained with this model
is reflected across multiple performance metrics, as shown in
Table 2. Although MCC was considered for model selection,

other metrics, such as precision, recall, and AUC-ROC, were
also critical for evaluating the ability of the model to generalize
and correctly classify both active and inactive compounds. A
comparative overview of the results is presented in Table 2.
3.3. Interpreting the Predictions Made by the Models.

Subsequently, to enhance interpretability and elucidate the
decision-making process of the model, we employed SHAP
(SHapley Additive exPlanations), a widely recognized frame-
work for interpreting complex machine learning models.39,42

SHAP analysis enabled the identification of key molecular
substructures that drive prediction outcomes, thereby increasing
confidence in both the interpretability and practical applicability
of the model.

As shown in Figure 5, the XGB model trained on dataset1
(model 1), the descriptor with the most significant impact was
PubchemFP392, which corresponds to a secondary amine (R-
NH-R′). The SHAP analysis of the impact of this feature showed
that its high frequency is strongly associated with positive SHAP
values. This indicates that the model has learned to recognize
this group as a strong predictor of inactivity. The model showed
a tendency to penalize simple fragments, which is reinforced by
the features PubchemFP635 (hydrazine, for example, Figure 5)
and PubchemFP791 (1,4-diaminacyclohexane, for example,
Figure 5), which shift the prediction to the inactive class.
Taken together, these results suggest that the model has learned
to filter out molecules containing nitrogenous and low-density
groups that are atypical in PI3K inhibitors. Other fingerprint
features, such as PubChemFP193, FP728, FP368, and FP335,
also contributed to the prediction of nonbinders, further
reinforcing the discriminatory capacity of the model for early
stage filtering of inactive molecules.

In contrast, the XGB model trained on dataset3 (model 2),
which aims to differentiate between weak and strong PI3K
binders in the second stage of analysis performed by the server,
exhibited a set of features with high values in the left (associated
with active compounds). To illustrate how model 2 identifies
active compounds, we used the known PI3K inhibitor,
Buparlisib, as a case study for interpreting SHAP results (Figure

Table 1. Metrics for Dataset1 and PubChem Fingerprints Are
Implemented in the First Step of the Virtual Screening
Pipeline

parameter metric value

training MCC_train 0.987
CV_mean 0.971
CV_SD 0.003

test MCC_test 0.919
precision 0.939
accuracy 0.971
recall 0.936
F1-score 0.937
AUC-ROC 0.993

Table 2. Metrics for XGB and PubChem Fingerprints Models
Trained for the Second Step of the Virtual Screening Pipeline

dataset split metrics XGB (dataset2) XGB (dataset3)

training CV_mean 0.939 0.972
CV_SD 0.006 0.005
MCC_train 0.985 0.996

test MCC_test 0.658 0.937
precision 0.951 0.952
accuracy 0.935 0.971
recall 0.977 0.972
F1-score 0.964 0.962
AUC-ROC 0.943 0.993

Figure 5. SHAP plot of model 1. In panel (A), the features were ranked according to the extent of their influence on the decisions of the models. Panel
(B) shows the patterns associated with the prediction of PI3K noninhibitors.
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6). The functional group feature with the greatest impact,
PubchemFP181, represents the presence of six-membered rings,
saturated or aromatic, containing heteroatoms. Buparlisib
exemplifies this characteristic very well, as its structure features
pyridine and pyrimidine rings, along with two morpholine units
(Figure 6B). SHAP analysis confirms that the presence of these
fragments results in a strong negative SHAP value, validating
them as key indicators in the prediction of active compounds.
This structural signature is complemented by other important
functional group feature, such as PubchemFP192 (three ormore
rings of size 6), reflecting the polycyclic nature of inhibitors in
the classification of active compounds. Similarly, the high
nitrogen count, captured by PubchemFP16 (four or more N
atoms), also drives the prediction to “active”, which is consistent
with the profile of Buparlisib. Taken together, the analysis of
Buparlisib reveals that the model has learned to associate activity
with a more complex chemical structure, characterized by
nitrogen-rich systems with multiple heteroatoms in six-
membered rings.

Interestingly, the two models shared a few features, and their
contributions varied significantly in both direction and
magnitude. This divergence underscores the complementary
roles of models 1 and 2 within the classification pipeline,
enhancing both the precision and efficiency of PI3K inhibitor
identification across chemically diverse compound libraries.
3.4. Applicability Domain (AD). Our models underwent a

two-stage validation process by applying AD in both model 1
and model 2. First, we demonstrated its robustness and
generalization ability in a chemically diverse dataset (dataset1,
model 1), as shown in Table 3, maintaining high performance
even for samples outside the domain of applicability. Next, we
proved its remarkable sensitivity and discriminatory efficiency in
a rigorous test with decoys (dataset3, model 2), confirming its
effectiveness for the critical task of refining PI3K ligands. This
dual approach with AD ensures that the model is not only a
reliable generalist but also a high-performance specialist,
validating it for practical application.
3.5. Web Server Deployment. The PI3K-Seeker web

server is a user-friendly and computationally efficient platform
designed to accelerate the identification of new inhibitors
targeting class I PI3Ks. Implemented in Python, the application

employs the XGB algorithm to predict the ability of small-
molecule ligands to bind to the PI3K isoforms α, β, γ, and δ. The
only required input is a list of SMILES strings representing the
chemical structures of the candidate molecules to be evaluated
(Figure 7A).

Initially, the algorithm performs a validation step to ensure
that the input file contains exclusively SMILES representations
of small-molecule ligands. Subsequently, the platform computes
molecular fingerprints using the PubChem fingerprinting
methodology, executes predictive modeling, and generates the
corresponding output files (Figure 7B). The results page
provides access to a CSV file containing detailed information
for each compound (Figure 7C), including the molecule name,
SMILES string, predicted activity, molecular weight (MW),
LogP, number of hydrogen bond donors (HBD), number of
hydrogen bond acceptors (HBA), and Topological Polar
Surface Area (TPSA). The entire workflow is computationally
efficient, requiring only a fraction of a second per molecule.

The high processing speed of PI3K-Seeker comesmainly from
the use of the XGB algorithm as the core predictive model.
Designed to efficiently handle high-dimensional and sparse
datasets, such as those encountered in biological and
cheminformatics applications, XGB supports parallelization
across CPUs and GPUs, enabling rapid execution at scale.27

Its scalability and predictive accuracy have been extensively
validated across various biomedical contexts, including
quantitative structure−activity relationship (QSAR) modeling,
classification of early and late-stage cancers, and the prediction
of clinical treatment outcomes, acute kidney injury prediction,

Figure 6. Fingerprints and substructure patterns. (A) SHAP plot associated with the active classification of model 2. (B) Fingerprints and the
substructures that they represent are numbered 1−5, along with a description. In compound Buparlisib, a pan-inhibitor of PI3K, the substructures are
highlighted. Each number corresponds to a color shown in Buparlisib, and they are linked to the classification of active compounds.

Table 3. Applying the Applicability Domain (AD) in Model 1
and Model 2

XGB-dataset1 (test) XGB-dataset3 (test)

metrics in AD out AD in AD out AD

MCC 0.920 0.906 0.941 0.856
accuracy 0.972 0.969 0.972 0.931
precision 0.939 0.944 0.955 0.917
recall 0.937 0.907 0.972 0.976
F1-score 0.938 0.925 0.964 0.945
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blood−brain barrier drug classification, and biomarker discovery
in Alzheimer’s disease transcriptomic data.43−46

3.6. Proof-of-Concept Validation. To better evaluate the
performance of PI3K-Seeker, we subjected it to two distinct and

challenging real-world scenarios. In the first case study, we

assessed the server using PI3K ligands extracted from crystallo-

graphic structures, also absent from the training set.

Figure 7. General overview of the PI3K-Seeker web server. (A) Input screen; (B) workflow including data processing, classification, and results
generation; and (C) the output page showing a graphical representation of results and links to download CSV files with result data.
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Also, we compared it with SVM, which performed very
similarly to XGB using the parameters applied in PI3K-Seeker.
In the second case study, the PI3K-Seeker was tested with a
dataset composed exclusively of non-PI3K binders retrieved
from the ChEMBL database, which were not included in the
training data of the model.

As shown in Table 4, the PI3K-Seeker server was evaluated for
its ability to classify ligands from crystallographic PI3K
structures not used during model training. A total of 14 ligands
were tested: 11 with confirmed inhibitory activity against at least
one PI3K isoform and three classified as noninhibitors. As the
primary objective of this test was to assess the capacity of the
model to distinguish between high- and low-affinity binders,
crystallographic noninhibitors were included as controls based
on their well-characterized interactions with key residues in the
PI3K binding site. Among them, ligand L2 V interacts with
residues such as R770α and W780α, critical for PI3Kα isoform
selectivity, without interfering with kinase activity, thereby
validating its classification as a noninhibitor.47 Similarly, PBU, a
di-C4-phosphatidylinositol-4,5-bisphosphate (diC4-PIP2) lipid
substrate mimetic used to study PI3Kα catalysis, was correctly
identified as a noninhibitor.48 The ATR inhibitor 8DV,
structurally distinct and inactive against PI3K, was also correctly
classified.49

As shown in Table 4, PI3K-Seeker achieved correct
classification for 13 of the 14 compounds. The only misclassified
ligand was MWF (Inavolisib), a molecule that does not act
through conventional kinase inhibition but instead induces
proteasome-dependent degradation of the mutant p110α
protein.56 This mechanistic divergence from the training data
likely accounts for the misclassification. Inavolisib was approved
by the U.S. Food and Drug Administration in October 2024, in
combination with palbociclib and fulvestrant, for treating
endocrine-resistant, PIK3CA-mutated, hormone receptor-pos-
itive, HER2-negative advanced breast cancer.27

When dealing with external data with PI3K inhibitors, SVM
ended up incorrectly classifying active inhibitors as inactive.

Therefore, the underperformance below expectations is a
bottleneck that prevents the expected improvement in phase
two. In this regard, XGB proved to be superior, capable of
satisfactorily separating inactive ligands and identifying active
ones. However, both algorithms failed to classify Inavolisib. The
final choice of pipeline was based on the balance between
robustness and accuracy. In this scenario, we have XGB (PI3K-
Seeker) as the alternative that best balances these aspects.

In the second case study, the server demonstrated excellent
performance in correctly identifying non-PI3K binders across a
diverse set of protein targets, with predictive accuracy exceeding
95% in the vast majority of datasets (Table 5). This high
accuracy confirms the model’s ability to effectively discriminate
PI3K-specific ligands from those active against unrelated
molecular targets, even within large and structurally diverse
compound libraries. Notably, the server maintained high
discriminatory efficiency for other kinase targets, such as
EGFR (97.9%), FGFR1 (94.8%), RAF (96.0%), and insulin
receptor (98.5%), reinforcing its robustness in distinguishing
PI3K inhibitors from other ATP-competitive ligands. Overall,
these findings highlight the high specificity of the model and its
potential applicability in virtual screening workflows aimed at
identifying selective PI3K inhibitors.

4. CONCLUSIONS
In this work, we present the PI3K-Seeker server, a powerful and
freely accessible computational tool designed to speed up drug
discovery by narrowing down compounds with the ability to
bind to the ATP-binding pocket of PI3K class I enzymes. The
server integrates the use of two machine learning models based
on the XGB algorithm to differentiate between PI3K binders and
nonbinders. The user can easily interrogate the server by solely
supplying a list of SMILES strings. Compared to existing
approaches, the PI3K-Seeker server offers superior performance,
delivering high-accuracy predictions in under seconds. This
study highlights the predictive power of machine learning

Table 4. Ligands Found in the Crystallographic Structures of PI3K and Tested with PI3K-Seeker versus SVM

PDB ligand IUPAC state
prediction

PI3K-Seeker
prediction

SVM

3PRZ50 3RZ 4-amino-2-methyl-N-(1H-pyrazol-3-yl)quinazoline-8-carboxamide active active active
3PS650 3PS 4-amino-N-(6-methoxypyridin-3-yl)-2-methylquinazoline-8-carboxamide active active inactive
4OVV48 PBU [(2R)-2-butanoyloxy-3-[hydroxy-[(1R,2R,3S,4R,5R,6S)-2,3,6-trihydroxy-4,5-

diphosphonooxycyclohexyl]oxyphosphoryl]oxypropyl] butanoate
inactive inactive inactive

5JHA51 6K7 [1-{4-[6-amino-4-(trifluoromethyl)pyridin-3-yl]-6-(morpholin-4-yl)pyrimidin-2-yl}-3-
(chloromethyl)azetidin-3-yl]methanol

active active inactive

5UK849 8DV (R)-4-(6-(1-(cyclopropylsulfonyl)cyclopropyl)-2-(1H-indol-4-yl)pyrimidin-4-yl)-3-
methylmorpholine

inactive inactive inactive

5XGH52 84U 3-[(4-fluorophenyl)methylamino]-5-(4-morpholin-4-ylthieno[3,2-d]pyrimidin-2-yl)phenol active active active
6EYZ53 C5W 2-methoxy-5-[4-[5-[(4-propan-2-ylpiperazin-1-yl)methyl]-1,3-oxazol-2-yl]-2∼{H}-indazol-6-yl]

pyridine-3-carboxylic acid
active active active

6GY054 FGE ∼{N}-[4-methyl-5-(1-oxidanylidene-7-sulfamoyl-isoindol-5-yl)-1,3-thiazol-2-yl]ethanamide active active active
6ZAA55 QD2 4-[6-methoxy-5-(methylsulfamoyl)pyridin-3-yl]-∼{N}-(1-methylpiperidin-4-yl)-2,3-dihydro-1,4-

benzoxazine-6-carboxamide
active active active

8AM056 MWF (2R)-2-[[2-[(4S)-4-[bis(fluoranyl)methyl]-2-oxidanylidene-1,3-oxazolidin-3-yl]-5,6-
dihydroimidazo[1,2-d][1,4]benzoxazepin-9-yl]amino]propanamide

active inactive inactive

8ILV47 L2V N-[(2R)-1-(ethylamino)-1-oxidanylidene-3-[3-(2-quinoxalin-6-ylethynyl)phenyl]propan-2-yl]-
2,3-dimethyl-quinoxaline-6-carboxamide

inactive inactive inactive

8SC857 D0D N-[(5P)-2-chloro-5-(4-{[(1R)-1-phenylethyl]amino}quinazolin-6-yl)pyridin-3-yl]
methanesulfonamide

active active active

9GCF58 A1IJ5 3-[(1S)-1-[4-azanyl-3-(5-oxidanylpyridin-3-yl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-4-[3-[(4-
methylpiperazin-1-yl)methyl]phenyl]isochromen-1-one

active active active

9GDI58 A1IJ1 3-[(1S)-1-[4-azanyl-3-(3-fluoranyl-5-oxidanyl-phenyl)pyrazolo[3,4-d]pyrimidin-1-yl]ethyl]-4-(1-
methyl-3,6-dihydro-2H-pyridin-4-yl)isochromen-1-one

active active active
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algorithms in virtual screening protocols, contributing to
speeding up the discovery of PI3K inhibitors.
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