Optimal Path Planning in Complex Cost Spaces
with Sampling-based Algorithms

Didier Devaurs, Thierry Siméon, and Juan Cortés

Abstract—Sampling-based algorithms for path planning, such
as RRT, have achieved great success, thanks to their ability to
efficiently solve complex high-dimensional problems. However,
standard versions of these algorithms cannot guarantee optimality
or even high-quality for the produced paths. In recent years,
variants of these methods, such as T-RRT, have been proposed to
deal with cost spaces: by taking configuration-cost functions into
account during the exploration process, they can produce high-
quality (i.e. low-cost) paths. Other novel variants, such as RRT#,
can deal with optimal path planning: they ensure convergence
toward the optimal path, with respect to a given path-quality
criterion. In this paper, we propose to solve a complex problem
encompassing this two paradigms: optimal path planning in a
cost space. For that, we develop two efficient sampling-based
approaches that combine the underlying principles of RRT* and
T-RRT. These algorithms, called T-RRT* and AT-RRT, offer
the same asymptotic optimality guarantees as RRT*. Results
presented on several classes of problems show that they converge
faster than RRT* toward the optimal path, especially when
the topology of the search space is complex and/or when its
dimensionality is high.

Note to Practitioners—Despite their conceptual simplicity,
sampling-based algorithms are very successful at solving complex,
high-dimensional path-planning problems. Their underlying prin-
ciple is to explore the configuration space of a mobile system by
sampling it, and to build a graph representing the topology of this
space. Sampling-based path planning has traditionally focused
on finding feasible (i.e. collision-free) paths, without considering
their quality. However, in many applications, it is important to
compute high-quality (i.e. low-cost) paths with respect to a cost
function defined on the configuration space, which is referred to
as cost-space path planning. In recent years, variants of classical
sampling-based planners have been developed to explore cost
spaces. On another front, other approaches have aimed at finding
the optimal (i.e. highest-quality) path with respect to a path-
quality criterion, which is referred to as optimal path planning.
In this paper, we study a problem to which little work has been
devoted, and that encompasses these two paradigms: optimal
path planning in a cost space. In this context, the definition
of the path-quality criterion is based on the configuration-cost
function. To efficiently solve this challenging problem, we propose
two new sampling-based algorithms that combine the principles
underlying current approaches targeting cost-space and optimal
path planning. These two novel algorithms provide the same
completeness and optimality guarantees as existing ones, but

This work has been partially supported by the European Community under
Contract ICT 287617 “ARCAS”.

All the authors are with CNRS, LAAS, 7 avenue du colonel Roche, F-31400
Toulouse, France, and Univ de Toulouse, LAAS, F-31400 Toulouse, France.

D. Devaurs’s current affiliation is: Department of Computer Science, Rice
University, Houston, TX 77005, USA.

Corresponding author: J. Cortés (jcortes @laas.fr).

converge faster toward the optimal path, especially on complex
planning problems. These methods have been evaluated only
in simulated environments and many applications (in robotics,
automation and other domains) remain to be investigated.

Keywords—Optimal path planning, cost space path planning,
anytime path planning, sampling-based path planning.

I. INTRODUCTION

OBOT path-planning methods have traditionally focused

on solving the feasible path planning problem, i.e. on
finding a collision-free path for a robot moving in a complex
environment. This relies on a classical framework abstracting
the workspace of a mobile system into a configuration space.
In many application fields, however, generating feasible so-
Iution paths might not be sufficient. It might be required to
obtain a high-quality solution path with respect to a given
path-quality criterion. One may even be looking for the optimal
solution path with respect to this quality criterion, i.e. the path
maximizing quality. This amounts to solving an optimal path
planning problem.

The first quality criteria to be considered were path length
and path duration [1]-[5]. More interesting problems can
be addressed with more sophisticated criteria, based on the
definition of a cost function over the configuration space,
which is then referred to as a cost space. Early work in
cost-space path planning only involved discrete, coarse-grained
cost functions [2], [6]. Our work focuses on continuous
configuration-cost functions, which is more challenging. As
an example, in outdoor navigation problems, the cost of a
configuration can be the elevation of the position of the robot
within a 2-D terrain. When high-clearance paths are desirable,
the cost of a configuration can be the inverse of the distance
between the robot and the closest obstacle [7], [8]. Even more
complex cost functions can appear in robotic problems [9],
[10] and structural-biology problems [11].

When applied to the optimal path planning problem, clas-
sical grid-based methods, such as A* or D*, can compute
resolution-optimal solution paths [12]. However, these methods
are limited to problems involving low-dimensional spaces
that can be discretized without leading to a combinatorial
explosion. As an alternative, some deterministic path planners
implicitly compute the optimal path with respect to a specific
quality criterion. For instance, the visibility diagram allows
obtaining the shortest path, and the Voronoi diagram allows
generating the path with optimal clearance [13]. Nevertheless,
such methods are also limited to low-dimensional spaces, and
can only deal with polygonal obstacles.

On the other hand, sampling-based algorithms, such as
the Rapidly-exploring Random Tree (RRT) [14], have been
successful at solving complex path-planning problems in high-
dimensional spaces. Besides, they are conceptually simple
and achieve probabilistic completeness. Nevertheless, they
originally targeted feasible path planning, and usually produce
sub-optimal solutions. As a complementary technique, after
a solution path is computed, it is common to improve the
quality of this path during a post-processing phase involving
so-called “smoothing” methods [15]. However, such methods
only allow to improve the path locally, and offer no guarantee
of converging toward the global optimum.

With the aim of taking a configuration-cost function into
account during the space exploration, a variant of RRT called
Transition-based RRT (T-RRT) was proposed [7]. It extends
RRT by integrating a Metropolis-like transition test. Thanks
to the filtering properties of this transition test, the exploration
performed by T-RRT favors low-cost regions of the space.
In fact, T-RRT mostly creates new nodes in these favorable
areas. T-RRT has been successfully applied to diverse robotic
problems [7]-[9] and structural-biology problems [11]. Nev-
ertheless, a drawback of T-RRT is that it cannot take a path-
quality criterion into account when creating edges and, thus,
involves no mechanism to allow for an improvement of the
quality of the current solution path. As a consequence, it offers
no optimality guarantee.

Another variant of RRT, called RRT*, was specifically
devised to solve the optimal path planning problem [2]. RRT*
has been shown to guarantee asymptotic optimality, thanks to
its management of edges based on path quality. It has been
applied to various robotic problems [2], [3], [16]. However,
when performing optimal path planning in a cost space, RRT*
is not very efficient because it does not take the configuration-
cost function into account when sampling the cost space and
creating new nodes. Indeed, RRT* only takes a path-quality
criterion into account, when creating or removing edges. As a
possible consequence, it has been observed that RRT* may
converge slowly toward the optimal solution-path in high-
dimensional cost-spaces [8].

In this paper, we address the issue of devising efficient
algorithms that can solve difficult, optimal path-planning prob-
lems featuring complex continuous configuration-cost func-
tions. For that, we build on the fact that RRT* and T-RRT
rely on complementary concepts that can be put together. More
precisely, we combine the two beneficial concepts underlying
these methods: 1) the filtering properties of the transition test in
T-RRT, favoring the creation of new nodes in low-cost regions
of the space, and 2) the quality-based management of edges
in RRT#*, allowing the quality of the solution path to increase
with time. We do this in two different ways, leading to two new
algorithms. The first algorithm, called Transition-based RRT*
(T-RRT*), consists of integrating the transition test of T-RRT
into RRT*. The motivation is to favor the exploration of low-
cost regions of the space, while maintaining the asymptotic
optimality property of RRT*. The second algorithm, called
Anytime T-RRT (AT-RRT), consists of enhancing T-RRT with
an anytime behavior enabled by the integration of a procedure
adding useful cycles (based on the path-quality criterion) to

the graph built over the space [1], [17]. The motivation is to
quickly obtain a first high-quality solution path and, then, carry
on the exploration for the solution to continually improve and
converge toward the optimal path.

The anytime paradigm has often been applied to RRT-like
algorithms. For instance, the first anytime variant of RRT was
based on building successive trees and exploiting the search
history [6]. The sampling process of this Anytime RRT was
later improved [18]. Another anytime variant of RRT builds
on the idea of pruning low-quality branches during the ex-
ploration [19]. The Rapidly-exploring Random Graph (RRG)
algorithm is also an anytime variant of RRT, which consists of
adding cycles to the tree built by RRT [2]. RRT* enhances RRT
with an anytime behavior by rewiring the tree built by RRT [2].
Inspired by RRT*, the Rapidly-exploring RoadMaps (RRM)
algorithm is another anytime RRT-like algorithm that allows
balancing the exploration and refinement parts of the search
process [20]. The meta-approach proposed in [21], based on
short-cutting and path hybridization, can also provide RRT-like
algorithms with an anytime behavior. Note that the Anytime
T-RRT we introduce here differs from other anytime RRT-like
algorithms in that it is based on adding useful cycles to the
tree built by T-RRT.

In what follows, we present a simple formulation of the
feasible, cost-space and optimal path planning problems (Sec-
tion II). Then, we describe T-RRT* and AT-RRT in greater
detail (Section IIT). We also explain why both algorithms are
probabilistically complete and asymptotically optimal (Sec-
tion IV). Finally, we evaluate T-RRT* and AT-RRT on several
path planning problems, and show that they converge toward
the optimal path faster than RRT* does (Section V). Thanks
to the filtering properties of the transition test they include,
T-RRT* and AT-RRT can efficiently solve difficult problems
featuring complex cost spaces, on which RRT* converges
very slowly. We present several such examples, illustrating
various aspects that make a path planning problem difficult to
solve. 1) If the problem features a large-scale workspace, even
in low dimension, favoring low-cost regions avoids wasting
time exploring the whole space. 2) If the space features
several homotopic classes between which it is difficult to jump,
even in low dimension, using the transition test can bias the
search toward the class containing the optimal path and avoid
being trapped in a sub-optimal class. 3) If the problem is
high-dimensional, it is inherently complex because the search
space is intrinsically large and can potentially contain many
homotopic classes.

This article is an extended version of [22], in which the
related work, problem formulation and result analysis have
been expanded.

II. PROBLEM FORMULATION
A. Feasible Path Planning

The classical formulation of the path planning problem
relies on abstracting the workspace of a robotic system into a
configuration space C, also called C-space. A configuration
q € C describes the position and volume occupied by the
robotic system in the workspace. The subset of C containing

the configurations inducing collisions with some obstacles in
the workspace is denoted Cop,st. Assuming that its complement
in C is an open set, we denote by Cgee the set cl(C \ Copst) Of
configurations producing no collision, where ¢l() denotes the
closure of a set.

Given an initial configuration ¢yt € Cree and a goal
configuration ¢goal € Ciree, @ path planning problem can be
defined as a triplet (C, ginit, Ggoa1)- A path over the C-space is
a continuous function 7 : [0, 1] — C. It is said to be collision-
free if for all ¢ € [0,1], 7(t) € Cree, 1.6 7 : [0,1] = Ciree-
Let IT denote the set of all paths over C and Il the set of
collision-free paths in II. The feasible path planning problem
is classically defined as follows:

Definition 1 (Feasible path planning problem). Given a path
planning problem (C, Ginit, Ggonl), find a path w € Ilyee such
that m(0) = ginit and 7(1) = Ggoal, if One exists, or report
failure otherwise.

Let Ilf,s denote the set of feasible paths, i.e. the set of
paths in ITfee such that m(0) = giniy and (1) = ggoa1. Among
the path planning problems having a solution, the theoretical
framework we rely on requires to focus on problems satisfying
the robust feasibility property [2].

Based on the geometric formulation provided by the con-
figuration space, several techniques have been proposed in
the robotics community to solve the feasible path planning
problem. The first ones were deterministic methods that proved
to be complete: they can terminate in finite time, returning
a solution if one exists, or failure otherwise. However, they
cannot cope with difficult problems, and are limited to low-
dimensional spaces. On the other hand, the sampling-based
approaches that were proposed later on can efficiently solve
high-dimensional problems. They are not complete, but sat-
isfy a property called probabilistic completeness, that can be
interpreted as a notion of “almost-sure” success:

Definition 2 (Probabilistic completeness). An algorithm A is
probabilistically complete if, for any robustly feasible path
planning problem (C, Ginit, Ggoal), the probability that A fails
to return a solution when one exists decays to zero as the
running time of A approaches infinity.

The analysis in Section IV is based on the fact that T-RRT
and RRT* are probabilistically complete [2], [7].

B. Cost-Space Path Planning

Let ¢ C — R, denote a continuous, differentiable
cost function associating to each configuration of the C-
space a positive cost value. The cost-space path planning
problem is denoted by a quadruplet (C, ginit, ggoal, ¢). Solving
this problem consists of solving the feasible path planning
problem (C, ¢init, ¢goa1) While taking the cost function ¢ into
account during the exploration of the C-space. This amounts
to filtering configurations based on their costs. More precisely,
each method aimed at solving the cost-space path planning
problem imposes a specific cost constraint evaluating each
configuration, based on its cost alone, or on the cost variation
associated with the local move between two configurations.

C. Optimal Path Planning

Let ¢, : Ilgee — Ry denote a quality criterion, associating
to each feasible path a positive cost value, and whose definition
is based on the configuration-cost function ¢ : C — R, . The
path-quality criterion ¢, can be defined in several ways, the
most common being to consider the integral of the cost along
a path. As a discrete approximation of the integral of the cost
with constant step size § = % (where n is the number of
subdivisions of the path), the cost of a path 7 can be defined

T et

k=1

ac

As an alternative, the mechanical work of a path can be
defined as the sum of the positive cost variations along the
path. This can be interpreted as summing the “forces” acting
against the motion. It has been shown that the mechanical
work can assess path quality better than the integral of the
cost in many situations [7]. As a discrete approximation of the
mechanical work with constant step size § = L the cost of a

path 7 can be defined as "

S (- (5) ()} o

We could consider other criteria to evaluate path quality,
such as the maximal cost along the path, or the average cost.
Which criterion is the most suited depends on the planning
problem and on the characteristics of its expected optimal
solution. Comparing cost criteria is out of the scope of this
paper. We use both IC and MW not to limit ourselves to
a single criterion, which could bias the interpretation of the
results. Note that, when using such quality criteria, as a slight
abuse of language, we interchangeably utilize the expressions
“high-quality path” and “low-cost path”.

The optimal path planning problem can now be defined as
follows:

Definition 3 (Optimal path planning problem). Given a path
planning problem (C, ginit, Ggoal), a configuration-cost function
c¢:C — Ry, and a monotonic, bounded path-quality criterion
¢p ¢ lgpee — Ry, find a path 7 € llgeas such that
cp(m*) = min{cp(7) |7 € jeas} if one exists, or report
failure otherwise.

Based on these notations, an optimal path planning problem
is denoted by a quintuplet (C, ginit, ¢goal, ¢, Cp). If it admits a
solution path 7*, then 7* is called the optimal path. Among
the optimal path planning problems having an optimal solution
path, the theoretical framework we rely on requires to focus
on problems admitting a robustly optimal solution [2].

In the context of optimal path planning, the evaluation of
a sampling-based algorithm should be based not only on the
concept of probabilistic completeness, but also on the concept
of asymptotic optimality. This property can be interpreted as a
notion of “almost-sure” convergence toward the optimal path,
and has been defined as follows [2]:

Definition 4 (Asymptotic optimality). An algorithm A is
asymptotically optimal if, for any optimal path planning prob-
lem (C, qinit, goal, C; Cp) admitting a robustly optimal solution
path with finite cost ¢* € Ry, the cost of the current solution
path that can be returned by A (this cost being infinite if no
solution is available yet) decreases toward c* as the running
time of A approaches infinity.

The analysis in Section IV is based on the asymptotic
optimality of RRT* [2].

III. ALGORITHMS

The Rapidly-exploring Random Tree (RRT) [14] is a popular
sampling-based algorithm that can solve the feasible path
planning problem (C, ginit, ¢goa1). Starting from the initial con-
figuration ¢ip;¢, RRT iteratively builds a tree 7 on the C-space.
At each iteration, a configuration gy,nq is randomly sampled
in C, and an extension toward ¢4 is attempted, starting from
its nearest neighbor, ¢uear, in 7. If the extension succeeds, a
new configuration gye. is added to 7, and connected by an
edge to @near- The criteria on when to stop can be reaching
the goal configuration ¢goa1, @ given number of nodes in 7, a
given number of iterations, or a given running time.

Several algorithms have been devised as extensions of RRT
to explore cost spaces. Among them, the Transition-based
RRT (T-RRT) consists of integrating in RRT a transition test
that favors the exploration of low-cost regions of C [7]. This
transition test is used to accept or reject the move from gpear
to gnew based on their respective costs. Even though it yields
high-quality (i.e. low-cost) paths when solving the cost-space
path planning problem, T-RRT offers no guarantee to solve the
optimal path planning problem because it does not include any
mechanism to improve its solution.

The other variant of RRT we consider here, named RRT#*,
has been specifically developed to solve the optimal path
planning problem [2]. In RRT*, instead of being linked to
Gnear> Qnew 1 linked to the configuration (among its neighbors
in C) maximizing the quality of the path in T between gt
and gpevw. Furthermore, if, as a parent in 7, guew allows one
of its neighbors in C to be connected to g;n;¢ via a higher-
quality path than the one currently available, some rewiring
is performed in 7. By deciding how to create and remove
edges of 7 based on the quality of the paths between gipi;
and every node in 7, RRT* enables the quality of the solution
extracted from 7T to increase with time. However, despite its
asymptotic-optimality guarantees, RRT* may converge slowly
in high-dimensional cost spaces [8].

In this work, we combine the beneficial (and complemen-
tary) concepts underlying RRT* and T-RRT. These concepts
are: 1) the filtering properties of the transition test in T-RRT,
favoring the creation of new nodes in low-cost regions of
the space, and 2) the quality-based management of edges in
RRT#, allowing the quality of the solution path to increase
with time. We do this in two different ways, by proposing an
extension to RRT* named Transition-based RRT* (T-RRT*)
and an extension to T-RRT named Anytime T-RRT (AT-RRT).
Both algorithms offer asymptotic-optimality guarantees when
applied to the optimal path planning problem. They allow

Algorithm 1: Transition-based RRT* (T-RRT*)

input : the optimal path planning problem (C, ginit, goal, ¢, Cp)
the dimension d of the C-space
the ~ constant derived from the volume of Cgree [2]
output: the graph G

1 G« initGraph(¢init)

2 while not stoppingCriteria(G) do
3 Qrand < sampleRandomConfiguration(C)

4 (near ¢ findNearestNeighbor(G, ¢rand)

5 Gnew <~ e><ter1d(ereaur s qrand)

6 if gnew 7 null and

transitionTest (G, ¢(gnear), ¢(gnew)) then

7 addNewNode(F, ¢new)

8 n < numberOfNodes(G)

9 Qnear ¢ nodesInBall(G, gnew, v (log(n) /n)l/d)
10 (Jpar < nOde_minCOStinit(Qnew > Qnear » Qnear s Cp)
11 addNewEdge(F, gpar > gnew)

12 foreach ¢, € Qnear do

13 T < pathInSpace(gnew > Gn)

14 if costinit(gnew) + ¢p(T) < costinit(¢n) and
isCollisionFree(mw) then

15 removeEdge(F, parent(qn), ¢n)

16 L addNewEdge(G, gnew > Gn)

17 return G

one to efficiently explore complex continuous cost-spaces,
yielding high-quality solution paths that improve with time
in an anytime fashion.

A. Transition-based RRT* (T-RRT*)

The pseudo-code of T-RRT* is presented in Algorithm 1.
It extends RRT* by integrating the transition test (line 6)
originally developed for T-RRT [7]. This transition test is used
to accept or reject the move from gnear tO gnew based on their
respective costs. If the move is accepted, T-RRT* behaves
exactly like RRT*. First, a new node is created in G to store
Gnew (line 7). Then, a search in G is performed to compute
the set Qnear Of configurations contained in a neighborhood
of Gnew of radius y (log(n) /n)'/? (line 9). As defined for
RRT#, this radius depends on the dimension d of C, on a
constant «y derived from the volume of Cy,qc, and on the number
n of nodes in G [2]. This dependency on n ensures that the
radius decreases as G grows. The next step of the algorithm
consists of finding the configuration gpar in Qnear U {gnear } to
which ¢nevw should be connected (line 10): the parent of gnew
is chosen as the configuration via which the path between ¢ipit
and @new has minimal cost. This is done by computing, for all
@n € Qnear U {qnear }» the cost ¢, (79) + ¢, ($), where 7 is
the path between gi,;; and ¢, in G, and 7r§ is the path between
¢n and @new in C. Finally, since the addition of a new node
in G potentially leads to the apparition of new paths having
lower costs than those currently in G, some rewiring might be
performed (lines 12—16). For each g, € Qyear, if the cost of
the path going from gini; tO ¢ Via gnew is lower than the cost
of the current path between gi,i; and ¢, in G, gnew becomes
the new parent of ¢, in G.

Algorithm 2: transitionTest (G, ¢;, ¢;)

Algorithm 4: addUsefulCycles (G, gnew > Cp)

input : the current temperature 7'
the temperature increase rate Trate
output: true if the transition is accepted, false otherwise
1 if ¢j < ¢ then return True
2 if exp(—(¢j — ¢i) /T) > 0.5 then
3 L T « T /2(ci—¢i)/ costhange(@) . petyrn True
4 else

5 L T « T -2Trate . return False

Algorithm 3: Anytime Transition-based RRT (AT-RRT)

input : the optimal path planning problem (C, ginit, ggoal, C, Cp)
output: the graph G

1 G + initGraph(ginit)

2 while not stoppingCriteria(G) do

3 Grand < sampleRandomConfiguration(C)
4 Qnear < findNearestNeighbor(§, grand)
5 Qnew <— eXtend(QDear s Qrand)
6 if gnew # null and
transitionTest (G, ¢(gnear), ¢(qnew)) then
7 addNewNode(G, gnew)
3 addNewEdge(G, gnear » Qnew)
9 if solutionPathExists(G, Ginit, goal) then
10 L addUsefulCycles(d, Gnew s Cp)
11 return G

The transitionTest involved in the T-RRT* algorithm
is presented in Algorithm 2. The transition between two
configurations is evaluated on the basis of their costs ¢; and
¢, ¢i being the cost of the source configuration and c¢; the cost
of the target configuration. A downhill move (¢; < ¢;) in the
cost landscape is always accepted. An uphill move is accepted
or rejected based on the probability exp(—(¢; — ¢i) /T) that
decreases exponentially with the cost variation ¢; — ¢;. In that
case, the level of selectivity of the transition test is controlled
by the femperature T, which is an adaptive parameter of the
algorithm. Low temperatures limit the expansion to gentle
slopes of the cost landscape, and high temperatures enable
it to climb steep slopes. After each accepted uphill move, T’
is decreased to avoid over-exploring high-cost regions: it is
divided by 2(CJ_C‘)/C°StRa“ge(g>, where costRange (G) is
the cost difference between the highest-cost and the lowest-cost
configurations stored in the nodes of G. After each rejected
uphill move, T is increased to facilitate the exploration and
avoid being trapped in a local minimum of the cost landscape:
it is multiplied by 27rte, where Tyate € (0,1] is the increase
rate of the temperature.

B. Anytime Transition-based RRT (AT-RRT)

The pseudo-code of AT-RRT is shown in Algorithm 3. It
also features the transitionTest (line 6) shown in Algo-
rithm 2, and extends T-RRT by offering an anytime behavior.
Before any solution is found, AT-RRT behaves exactly like
T-RRT (lines 3-8). As opposed to what happens in T-RRT,

input: the dimension d of the C-space
the ~ constant derived from the volume of Cree [2]
1 n < numberOfNodes(G)
2 Quear + nodesInBall(G, guew, v (log(n) /n)t/9)
3 foreach ¢, € Qnear do
Tg < pathInGraph(g, Qnew » QH)
s < pathInSpace(gnew , ¢n)
if cp(ms) < ¢p(mg) and isCollisionFree(mws) then
| addNewEdge(G, gnew » qn)

B = T I N

however, after a solution path is found, the exploration is
allowed to continue and a cycle-addition procedure is activated
(lines 9-10). This procedure is based on the notion of useful
cycles, as described in [1], [17]. It leads to the creation in G of
new paths that can be of higher quality than the best one found
so far. This allows the current solution-path to be continually
improved, in an anytime fashion, and to converge toward the
optimal path.

The addUsefulCycles procedure is presented in Algo-
rithm 4. When a new configuration gy, is added to G, we
consider all other configurations in G, within a neighborhood of
(new> as potential candidate targets for new edges. The radius
of this neighborhood depends on the dimension d of the C-
space and on a constant y derived from the volume of Cgee,
as is done for RRT* [2]. Again, this radius decreases with the
number n of nodes in G. Within the candidate set (Qnear, WE
are interested in the configurations that are “close” to gnew in
C, but “far” from g¢uew in G, not in terms of distance but in
terms of path cost. For each candidate ¢, € Qpear, if the cost
of the local path 7y between gney and g, in C is strictly less
than the cost of the lowest-cost path 7, between gnew and gy
in G, and if 7y is collision-free, we add an edge to G between
Gnew and ¢y, thus creating a useful cycle.

IV. THEORETICAL ARGUMENTS

We now review the properties of the T-RRT* and AT-RRT
algorithms, in terms of probabilistic completeness and asymp-
totic optimality (cf. Section II). It has already been proven
in previous work that the T-RRT and RRT* algorithms are
probabilistically complete [2], [7]. In the case of T-RRT, this
property is directly derived from the probabilistic completeness
of RRT: despite the integration of the transition test in RRT
to devise T-RRT, the algorithm retains this property. A similar
reasoning allows us to state that T-RRT* is probabilistically
complete, thanks to the probabilistic completeness of RRT*.
Furthermore, as AT-RRT behaves like T-RRT before a solution
path is found, it satisfies the same properties.

Theorem 1 (Probabilistic completeness). The T-RRT* and AT-
RRT algorithms are probabilistically complete.

Let us assume that the ~ constant involved in T-RRT* and
AT-RRT, and originally introduced in RRT*, satisfies

l % ,U(Cfree))(li
() ()

where d is the dimension of the C-space, (4 is the volume of
the unit ball in the d-dimensional Euclidean space, and ()
is an operator measuring the volume of a space. Under this
assumption, it has been proven that RRT* is asymptotically
optimal [2].

The only difference between T-RRT* and RRT* is the
addition of the transition test, that filters the nodes added
to G based on their costs. However, applying such filtering
has no impact on the current analysis. First, the probability
of any sampled node to be accepted by the transition test is
never zero: this probability depends exponentially on the local
cost increase and on the value of the temperature parameter.
Second, even if a sample ¢y 1S rejected at some point in time,
the probability of accepting another sample infinitely close to
(new later on tends to one when running time tends to infinity.
Therefore, even though T-RRT* favors the sampling of low-
cost areas of Cgee at the beginning of the exploration, if it
were to run for an infinite amount of time, T-RRT* would
generate a set of nodes uniformly covering Cg.ee; NO region
in Cree 1 prevented from being explored. In other words, the
nodes generated by T-RRT* can be assumed to be drawn from
a uniform distribution, as is the case for RRT*. Based on the
proof provided for RRT* [2], we can thus argue that T-RRT*
is also asymptotically optimal.

The lower bound on v expressed in (1) is the minimal
value allowing RRT* to be asymptotically optimal. Because
increasing the value of 7 raises the computational cost of an
iteration of RRT* (due to the increased number of neighbors to
be considered), this lower bound and the associated connection
radius represent the optimal tradeoff between efficiency and
asymptotic optimality. The connection radius involved in RRT*
is based on the number of nodes in the graph at a given point
in time, and not on the number of expansion attempts. The way
nodes are generated has no influence on the way the connection
radius is defined, as long as these nodes are drawn from a
uniform distribution. Therefore, the optimal connection radius
is the same for RRT* and T-RRT*.

AT-RRT and T-RRT* use the same procedure to create and
filter nodes, based on the extension mechanism of RRT and
on the transition test of T-RRT. The difference between them
lies only in the management of edges, and has no impact
on the current analysis. Both algorithms make the decisions
to create alternative paths based on cost improvement. The
specific criterion that an edge has to satisfy to be considered
useful in terms of cost improvement does not feature in the
proof of asymptotic optimality of RRT*. As the point processes
associated with AT-RRT and T-RRT* are the same, AT-RRT
is also asymptotically optimal.

Theorem 2 (Asymptotic optimality). The T-RRT* and AT-RRT
algorithms are asymptotically optimal.

V. EVALUATION
A. Path Planning Problems
We have evaluated the T-RRT* and AT-RRT algorithms
on several optimal path-planning problems that differ in
terms of C-space dimensionality, geometrical complexity and
configuration-cost function type.

Fig. 1. Stones problem: 2-DoF disk moving among rectangular-shaped
obstacles, while having to maximize its clearance. The figure shows graphs
built by AT-RRT (top) and T-RRT* (bottom) after a running time of 0.5 sec.

i

A .

e
=

Fig. 2. Inspection problem: quadrotor (whose close-up is shown in yellow)
inspecting an oil platform. The cost function involves the clearance of the
quadrotor’s 3-DoF safety sphere.

The Stones problem (illustrated in Fig. 1, Fig. 5 and Fig. 9)
is a 2-degrees-of-freedom (DoFs) example in which a disk
has to go through a space cluttered with rectangular-shaped
obstacles. The objective is to maximize clearance, so the cost
function associates to each position of the disk the inverse of
the distance between the disk and its closest obstacle.

Fig. 3.
go through one of the holes in the wall, while maintaining the balance of
the whole system. Both images show an intermediate configuration as well as
the goal configuration along paths obtained after 50 sec. Top: path produced
by T-RRT* when minimizing MW. Paths obtained when minimizing IC, and
paths produced by AT-RRT are similar. Bottom: path produced by RRT* when
minimizing IC. Paths obtained when minimizing MW are similar.

Transport problem: two quadrotors have to transport an object and

The Inspection problem deals with industrial inspection
in a dense environment. It involves an aerial robot used to
inspect an oil platform, as shown in Fig. 2. The featured
quadrotor is modeled as a 3-DoF sphere (i.e. a free-flying
sphere) representing the security zone around it. Assuming that
motions are performed quasi-statically, we restrict the problem
to planning in position (thus disregarding control issues). For
safety reasons, the quadrotor has to move in this environment
trying to maximize clearance for the security sphere. The
specificity of this problem is its large-scale workspace.

The Transport problem features aerial robots, and deals with
the collaborative transport of objects, as shown in Fig. 3. Two
quadrotors have to carry an H-looking object and go through
one of two holes in a wall. The robotic system comprises the
quadrotors themselves (and not safety spheres around them),
the 3-R planar manipulator arms attached below them, and the
carried object. A configuration of this system is defined by the
position and orientation of the object in space, and the relative
positions of the quadrotors with respect to the object. This

==

Fig. 4. Selected configurations along paths produced by AT-RRT when
minimizing IC (left) or MW (right), after a running time of 100 sec, on the
Snake problem. A snake-like object has to move among rectangular obstacles.
The cost function favors straight configurations, and regular over irregular
coiling. T-RRT* provides similar results.

problem is restricted to planning in position for the quadrotors
because of the quasi-static assumption made on their motions.
We consider a planar version of the problem, thus disregarding
translations along the Y axis and rotations around the X and
Z axes. Besides, the revolute joints of the arms are passive
degrees-of-freedom in constraints related to the closure of the
kinematic chain. Therefore, the system can be described with 7
DoFs: 3 DoFs for the object (two translations along the X and
Z axes, and a rotation around the Y axis) and 2 DoFs for each
quadrotor (two translations along the X and Z axes). In this
example, different cost functions can be defined. The notion
of clearance could be considered, but we use a cost function
based on the notion of “balance” in our experiments. Assuming
the initial configuration is stable, the idea is to maintain it
as much as possible, while allowing a complete freedom of
movement for the object with respect to the translations along
the X and Z axes. To achieve that, the cost of a configuration
is defined as the sum of the differences to the initial values for
the rotation of the object and the translations of the quadrotors.
The specificity of the Transport problem lies in the fact that
it features two very distinct homotopic classes. The two holes
in the wall constitute narrow passages of similar difficulty in
terms of purely geometrical planning: despite being wider, the
lower hole is partly obstructed by the second wall. Therefore,
a geometrical planner such as RRT produces feasible paths
going through either hole with similar probability. However,
when planning in the cost space with the clearance-based
cost function, paths going through the lower hole are favored
because it is larger than the other one. On the contrary, when
planning in the cost space with the balance-based cost function,
paths going through the upper hole are favored because they
do not require the robotic system to tilt sharply.

The Snake problem (illustrated in Fig. 4) involves a snake-
like object constituted of ten identical cylinders between
which nine revolute joints are defined. We also consider two
translations and a rotation of the whole system in the planar
workspace, which adds up to 12 DoFs. The cost function is
defined as the sum of the absolute differences between the
angular values of consecutive revolute joints, added to the
absolute value of the first revolute joint. It favors a straight
configuration of the object, or configurations in which all
revolute joints have the same value, which correspond to a
regular coiling of the object. This problem enables us to
analyze the behavior of the algorithms in higher dimension.

B. Settings

Before applying T-RRT* and AT-RRT to these path planning
problems, the values of their parameters have to be set.
Following [8], T}ate is set to 0.1 and T is initialized to 106,
The choice of these values is based on the analysis performed
in [7]. Finding a good value for v happens to be a real issue.
As already mentioned, the lower bound for y expressed in
(1) is the optimal value with respect to the tradeoff between
efficiency and asymptotic optimality. However, computing this
value requires to estimate the volume of Ce. This is possible
in low-dimensional spaces when the robotic system and the
obstacles are represented with simple geometric models, but
this is not realistic otherwise. To ensure that v satisfies (1), we

use the value
1y u<c>>5
=214+ - — . 2
r=2(13) (5 @

On the Stones and Inspection problems, since C is an Euclidean
space, its volume p(C) can be computed using the validity
interval of each DoF. However, this is not straightforward on
the Transport and Snake problems because of the revolute
joints they involve. For each DoF corresponding to such joint,
its angular range is multiplied by the length of the associated
rigid body.

T-RRT* and AT-RRT have been implemented in the path-
planning platform Move3D [23]. To fairly assess them, no
smoothing is performed on the solution paths. Values of IC
(integral of cost) and MW (mechanical work) are averaged
over 100 runs. Results have been obtained on an Intel Core i5
processor at 2.6 GHz with 8 GB of memory.

C. Results

T-RRT* and AT-RRT build graphs over C in different
ways because they involve different strategies to create (and
potentially remove) edges. This is illustrated in Fig. 1 on the
Stones problem. The upper figure clearly shows the cycles
created by AT-RRT, and the redundancy in paths. As can been
seen in the lower figure, the tree built by T-RRT* is much
sparser, because high-cost edges are removed. The numerical
results we present show that these differences in behavior do
not create significant differences in performance. Also, the
solution paths produced by the two algorithms usually look
very similar.

\

L 2
N B am N

- N
-y

A
Ve ye

Fig. 5. Solution paths produced by T-RRT* on the Stones problem when
minimizing IC (top) or MW (bottom) after a running time of 10 sec. Solution
paths produced by AT-RRT are similar.

15 — MW
10
5
C
0
0 path portion 1
Fig. 6. Cost profiles of two paths produced by AT-RRT on the Inspection

problem when minimizing IC or MW, after a running time of 10 sec.

Differences in solution paths are mainly due to the choice of
the path-quality criterion: IC or MW. This is clearly visible in
Fig. 5 and Fig. 6. Minimizing IC tends to favor shorter paths
along which the maximal cost can be very high (as illustrated
by Fig. 6), and minimizing MW sometimes produces strangely
convoluted paths (as illustrated by the lower part of Fig. 5).
Another drawback of MW (not illustrated here) is that, if the
cost of ginit is high, MW can be low even for paths going
through high-cost configurations. A better cost criterion could
probably be defined by combining the expressions of IC and
MW, but this goes beyond the scope of this paper. Note that,
on some problems, such as Transport, the choice of the cost
criterion has little impact on the results.

~®-RRT*

~@=-RRT*
=d=T-RRT*
=+=AT-RRT

Stones Inspection

80 =#=T-RRT* 30
=+=AT-RRT

25

0 10 20 30 10 50 0 10 20 30 10 50
t(s) t(s)

100 920
Transport ~=-RRT* ‘ Snake
80 —T-RRT* 80
——AT-RRT
70
60 ‘ ‘ ~m-RRT*
—4T-RRT*

40 =#=AT-RRT
50]
20 40 —

o S ® 30
0 20 40

80 100 o 20 40 80 100

e (e ©

Fig. 7. Evolution over time of the costs (integral of the cost, IC, averaged
over 100 runs) of the solution paths produced by RRT*, T-RRT* and AT-RRT,
on the four path planning problems.

To evaluate the performance of T-RRT* and AT-RRT, we
analyze the evolution over time of the costs of the solution
paths they produce. As a reference, we compare both algo-
rithms to RRT* [2]. To obtain the best results with RRT*, we
use the conditional activation and branch-and-bound heuristics
when they are beneficial. The conditional activation heuristic
consists of planning with a regular RRT until the first solution
is found, and only then activating the procedures specific
to RRT* [16]. The branch-and-bound heuristic consists of
trimming the nodes in G that cannot allow finding paths with
costs lower than that of the current solution path, which is
assessed using a cost-to-go function [3]. Both heuristics are
beneficial on the Transport and Snake problems.

Numerical results obtained on the four path planning prob-
lems (each one being tested with a given pair (ginit, goal) Of
configurations) are reported in Fig. 7 for IC, and Fig. 8 for
MW. They clearly show that T-RRT* and AT-RRT converge
faster than RRT* toward the optimum. Even on a problem as
simple as Stones, if only little time is available, T-RRT* and
AT-RRT yield better-quality solutions than RRT*. But, given
enough time, all algorithms produce paths of similar quality.
Analyzing the exploratory behavior of each algorithm reveals
that the filtering properties of the transition test help focus
the search on the most relevant parts (i.e. the low-cost areas)
of the workspace. Indeed, graphs produced by RRT* contain
numerous nodes in high-cost regions of the space (as is the
case with RRT, cf. Fig. 9), contrary to graphs produced by
T-RRT* or AT-RRT (cf. Fig. 1).

When the size of the workspace is larger, as in the Inspection
problem, the dominance of T-RRT* and AT-RRT is even
clearer. When the problem is even more complex, as is the case
of Transport, the weaknesses of RRT* start to translate into
a very low rate of convergence. Thanks to the transition test,
the search performed by T-RRT* or AT-RRT is usually guided
toward the homotopic class containing the optimal path (i.e.
the upper hole, when using the balance-based cost function,
as shown in the upper part of Fig. 3). On the contrary, the
first solution produced by RRT* can belong to any of the two

~B=RRT*
=#=T-RRT*
«=4=AT-RRT

6 10
Stones =#-RRT* Inspection
5 =#=T-RRT* 8
~+=AT-RRT
4 6
3 4
2 2
» :

*
0 10 20 30 40 50 0 10 20
20

30 10 50
t(s) t(s)
~m-RRT*
<=T-RRT* 8
~—AT-RRT ‘

Transport Snake

=#=T-RRT*
=4=AT-RRT

\
-
{

5
3 4+~L
o RN
0 20 40

60 80 100 o0 40 60 80 100
t(s) t(s)

Fig. 8. Evolution over time of the costs (mechanical work, MW, averaged
over 100 runs) of the solution paths produced by RRT*, T-RRT* and AT-RRT,
on the four path planning problems.

homotopic classes; if it is found in the sub-optimal one (i.e. the
lower hole), RRT* gets stuck in this class and into optimizing
a low-quality solution (see the lower part of Fig. 3).

On high-dimensional problems, such as Snake, RRT* con-
verges very slowly. Looking at Fig. 7 and Fig. 8, one may
think that it is also the case for T-RRT* and AT-RRT. To check
that, we have let the three algorithms run for 12 hours while
minimizing MW. We have obtained solutions of costs 3.42,
241 and 2.24 for RRT*, T-RRT* and AT-RRT respectively.
Looking at Fig. 8, it means that, after 100 sec, T-RRT* and
AT-RRT are already close to the optimum, contrary to RRT*.

Finally, to assess whether what we observe is consistent
across the domains corresponding to the four optimal path-
planning problems, we have evaluated the algorithms on in-
stances of these problems involving different pairs (¢init, Ggoal)
of configurations. The results we have obtained (but that are
not presented here due to space limitations) are similar to what
we report above.

VI. CONCLUSION

In this paper, we have proposed two new sampling-based
algorithms to solve the optimal path planning problem in a
cost space. They combine the underlying principles of T-RRT
and RRT*, the goals being to benefit from their respective
strengths and to overcome their respective weaknesses. On the
positive side, T-RRT can efficiently explore a cost space thanks
to the filtering properties of its transition test, and RRT* is
asymptotically optimal. On the negative side, T-RRT is not
asymptotically optimal, and RRT* may converge slowly on
complex cost spaces. The two hybrid methods are: 1) the
Transition-based RRT* (T-RRT#*), which is an extension of
RRT#* integrating the transition test of T-RRT, and 2) the
Anytime T-RRT (AT-RRT), which is an extension of T-RRT
integrating a useful-cycle addition procedure. We have proven
that T-RRT* and AT-RRT are both probabilistically complete
and asymptotically optimal. We have evaluated them on several
optimal path-planning problems featuring complex, continuous
cost functions, and compared them to RRT*. Results show

Fig. 9. Graphs built on the Stones problem, by RRT (top), T-RRT (middle)
and RRT* (bottom). As this example involves a clearance-based cost function,
nodes close to the obstacles have high costs, and nodes far from the obstacles
have low costs. Because they do not take this configuration-cost function into
account, RRT and RRT* create nodes close to the obstacles. On the contrary,
as it favors low-cost regions of the space, T-RRT creates nodes further from
the obstacles, similarly to what T-RRT* and AT-RRT do (cf. Fig. 1).

that they converge faster than RRT* toward the optimal path,
sometimes even orders of magnitude faster. This is especially
true when the search space is very large, when its topology is
complex, and/or when dimensionality is high.

Our experiments show that AT-RRT tends to perform
slightly better than T-RRT*. As future work, it would be
interesting to analyze further how the two algorithms behave,
to pinpoint which strategy works best in general, or on partic-
ular classes of optimal path-planning problems. Disregarding
computational performance, a clear advantage of AT-RRT over
T-RRT* is that it can easily be extended into a multiple-tree
algorithm, by combining it to the Multi-T-RRT [24]. Another
interesting aspect of AT-RRT is that it builds a graph containing
cycles, therefore providing alternative paths over the space.
This could be leveraged when path replanning is required due
to errors in the model or moving obstacles.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

[9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

D. Nieuwenhuisen and M. Overmars, “Useful cycles in probabilistic
roadmap graphs,” in JEEE ICRA, 2004, pp. 446-452.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Robot. Res., vol. 30, no. 7, pp. 846-894, 2011.
S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime
motion planning using the RRT*,” in IEEE ICRA, 2011, pp. 1478-1483.

J. Marble and K. Bekris, “Asymptotically near-optimal planning with
probabilistic roadmap spanners,” IEEE Trans. Robot., vol. 29, no. 2, pp.
432-444, 2013.

A. Dobson and K. Bekris, “Sparse roadmap spanners for asymptotically
near-optimal motion planning,” Int. J. Robot. Res., vol. 33, no. 1, pp.
18-47, 2014.

D. Ferguson and A. Stentz, “Anytime RRTSs,” in IEEE/RSJ IROS, 2006,
pp. 5369-5375.

L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on
configuration-space costmaps,” IEEE Trans. Robot., vol. 26, no. 4, pp.
635-646, 2010.

D. Devaurs, T. Siméon, and J. Cortés, “Enhancing the transition-based
RRT to deal with complex cost spaces,” in IEEE ICRA, 2013, pp. 4105—
4110.

D. Berenson, T. Siméon, and S. Srinivasa, “Addressing cost-space
chasms in manipulation planning,” in IEEE ICRA, 2011, pp. 4561—
4568.

M. Manubens, D. Devaurs, L. Ros, and J. Cortés, “Motion planning for
6-D manipulation with aerial towed-cable systems,” in RSS, 2013.

L. Jaillet, F. Corcho, J.-J. Pérez, and J. Cortés, “Randomized tree con-
struction algorithm to explore energy landscapes,” J. Comput. Chem.,
vol. 32, no. 16, pp. 3464-3474, 2011.

A. Stentz, “Optimal and efficient path planning for partially-known
environments,” in JEEE ICRA, 1994, pp. 3310-3317.

J.-C. Latombe, Robot Motion Planning. Kluwer Academic, 1991.

S. LaValle and J. Kuffner, “Rapidly-exploring random trees: progress
and prospects,” in Algorithmic and Computational Robotics: New
Directions. A. K. Peters, 2001, pp. 293-308.

R. Geraerts and M. Overmars, “Creating high-quality paths for motion
planning,” Int. J. Robot. Res., vol. 26, no. 8, pp. 845-863, 2007.

J. Jeon, S. Karaman, and E. Frazzoli, “Anytime computation of time-
optimal off-road vehicle maneuvers using the RRT*,” in IEEE CDC,
2011, pp. 3276-3282.

R. Geraerts and M. Overmars, “Creating high-quality roadmaps for
motion planning in virtual environments,” in IEEE/RSJ IROS, 2006,
pp. 4355-4361.

Q. Zhu, Y. Wu, G. Wu, and X. Wang, “An improved anytime RRTs
algorithm,” in AICI, 2009, pp. 268-272.

Y. Abbasi-Yadkori, J. Modayil, and C. Szepesviri, “Extending rapidly-
exploring random trees for asymptotically optimal anytime motion
planning,” in /EEE/RSJ IROS, 2010, pp. 127-132.

R. Alterovitz, S. Patil, and A. Derbakova, “Rapidly-exploring roadmaps:
weighing exploration vs. refinement in optimal motion planning,” in
IEEE ICRA, 2011, pp. 3706-3712.

R. Luna, I. Sucan, M. Moll, and L. Kavraki, “Anytime solution
optimization for sampling-based motion planning,” in /[EEE ICRA, 2013,
pp. 5068-5074.

D. Devaurs, T. Siméon, and J. Cortés, “Efficient sampling-based ap-
proaches to optimal path planning in complex cost spaces,” in WAFR,
2014.

T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: a generic
platform for path planning,” in /EEE ISATP, 2001, pp. 25-30.

D. Devaurs, T. Siméon, and J. Cortés, “A multi-tree extension of the
Transition-based RRT: Application to ordering-and-pathfinding prob-
lems in continuous cost spaces,” in IEEE/RSJ IROS, 2014, pp. 2991
2996.

