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ABSTRACT: The recognition of peptides bound to class I major
histocompatibility complex (MHC-I) receptors by T-cell receptors
(TCRs) is a determinant of triggering the adaptive immune
response. While the exact molecular features that drive the TCR
recognition are still unknown, studies have suggested that the
geometry of the joint peptide−MHC (pMHC) structure plays an
important role. As such, there is a definite need for methods and
tools that accurately predict the structure of the peptide bound to
the MHC-I receptor. In the past few years, many pMHC structural
modeling tools have emerged that provide high-quality modeled
structures in the general case. However, there are numerous
instances of non-canonical cases in the immunopeptidome that the
majority of pMHC modeling tools do not attend to, most notably,
peptides that exhibit non-standard amino acids and post-translational modifications (PTMs) or peptides that assume non-canonical
geometries in the MHC binding cleft. Such chemical and structural properties have been shown to be present in neoantigens;
therefore, accurate structural modeling of these instances can be vital for cancer immunotherapy. To this end, we have developed
APE-Gen2.0, a tool that improves upon its predecessor and other pMHC modeling tools, both in terms of modeling accuracy and
the available modeling range of non-canonical peptide cases. Some of the improvements include (i) the ability to model peptides
that have different types of PTMs such as phosphorylation, nitration, and citrullination; (ii) a new and improved anchor
identification routine in order to identify and model peptides that exhibit a non-canonical anchor conformation; and (iii) a web
server that provides a platform for easy and accessible pMHC modeling. We further show that structures predicted by APE-Gen2.0
can be used to assess the effects that PTMs have in binding affinity in a more accurate manner than just using solely the sequence of
the peptide. APE-Gen2.0 is freely available at https://apegen.kavrakilab.org.

1. INTRODUCTION
The adaptive immune response is a vital component of the
immune system of any organism, seeking to destroy pathogens,
viruses, or cancer cells.1 The process in which cytotoxic CD8+
T cells recognize and kill infected cells involves a series of
steps; as part of the cells’ internal processes, intracellular
proteins undergo proteasomal cleavage, resulting in smaller
amino-acid chain fragments, referred to as peptides. Peptides
that are 8−15 amino acids long bind to class I major
histocompatibility complex (MHC-I) proteins, forming a
peptide−MHC (pMHC) complex. The pMHC complex is
then transported to the surface of the cell, where the T-cell
receptor (TCR) scans the pMHC complex to assess if the
peptide is self or foreign, the latter case resulting in T-cell
activation.2 Determining which peptides bind to MHC-I
proteins and determining which pMHC complexes will elicit
an immune response are both longstanding problems in
computational biology and immunoinformatics.3 Accurate
identification of good peptide targets has an immediate effect

on the efficacy of therapeutics such as peptide vaccination4 or
T cell-based therapies.5

Most of the methods that predict the binding affinity of the
peptide to the MHC-I, the crucial first step in eliciting an
immune response, have long been based on analyzing peptide
sequences,6,7 due to the large amounts of binding affinity and
mass spectroscopy data that are publicly available.8 Methods
that determine the immunogenicity of a peptide solely based
on its amino-acid sequence have also started emerging
rapidly.9,10 In contrast to the availability of sequence data
and sequence-based methods, the number of available pMHC
crystal structures in public databases is order of magnitudes
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lower.11,12 However, there is extensive evidence that structural
features stemming from the bound peptide are predictive of
properties such as binding affinity,13 stability,14 and peptide
immunogenicity.15,16 Certain chemical modifications such as
single point mutations15,17 or post-translational modifications
(PTMs) such as phosphorylation18 can cause severe structural
alterations, thus, noticeable effects in T-cell recognition, with
minimum effect on the peptide sequence.17 Moreover, there
have been studies which employed modeled pMHC structures
and subsequently extracted structural features that have shown
to be predictive of the aforementioned properties, even
exhibiting competitive performance in comparison to peptide
sequence-based tools.13,19,20 It follows that devising algorithms
and methodologies that provide accurate geometries of pMHC
models is crucial in immune response-related tasks.

There are quite a few examples of pMHC structural
modeling tools in the literature that employ a diverse set of
algorithms and methodologies to achieve good modeling
accuracy.19 These tools have shown in practice to be successful
in providing high-quality structural conformations when
compared to ground-truth crystal structures. The pDOCK
protocol21 involves two input preparatory steps related to the
MHC receptor, as well as the calculation of a docking grid,
followed by a single docking (Monte Carlo sampling and
scoring) and refinement step (using a Monte Carlo
procedure). The refinement protocol of Rosetta FlexPep-
Dock22 has been tested on modeling peptide conformations in
the MHC binding cleft, reporting near-native predictions (≤2
Å). A crucial step in Rosetta FlexPepDock is the choice of a
proper pMHC template from a database of structures, which is
used to produce the new model.23 Moreover, the ab initio
protocol of Rosetta FlexPepDock24 has also been recently
tested on pMHC modeling.25 DockTope26 provides a web-
based platform for pMHC docking, employing a combination
of molecular docking and an energy minimization protocol that
achieves, on average, high-quality pMHC structures (≤1 Å). It
is limited, however, to only four MHC alleles in total.
GradDock27 uses the highly conserved anchor positions of the
peptide and constructs an ensemble of peptide conformations
from half-peptides bound to the anchor positions in the MHC
cleft. APE-Gen28 employs a similar approach, by utilizing an
anchor alignment process to define the location of the termini’s
positions. It then constructs an ensemble of peptide
conformations using a loop modeling algorithm,29 without
using prior knowledge about the middle portion of the peptide,
resembling in this way an ab initio modeling approach.
PANDORA30 uses homology modeling and a loop optimiza-
tion approach to provide an ensemble of conformations.
Incremental docking methods like DINC2.031 have been
successfully applied to pMHC modeling, due to the large
molecular size of the peptides that bind to MHC-I proteins.32

Lastly, pMHC modeling using a fine-tuned version of
AlphaFold33 has been applied in predicting peptide-binding
specificity using structure34 with comparable results to
NetMHCpan4.1, a sequence-based method.7 While, as
previously mentioned, all the pMHC modeling tools in the
literature are using a diverse set of methodologies to provide
accurate bound peptide conformations, all the approaches
(with very few exceptions) can in theory be grouped into two
categories: approaches that are using information from a
known peptide template and approaches that follow an ab
initio modeling paradigm and sample peptide backbones.

Another similarity that the aforementioned pMHC modeling
methods and tools share is that they, with a few exceptions, can
only model peptides that exhibit canonical geometries and
peptides that are comprised of the 20 canonical amino acids.
However, there have been numerous known instances of
peptides that do not follow canonical geometries and/or are
composed of one or more chemical modifications. Focusing on
peptide geometries, in the canonical case, it is the amino acid
in the second position of a peptide sequence that assumes the
anchor position in the B pocket of the MHC-I and the last
amino acid in same peptide sequence that assumes the anchor
position in the F pocket of the MHC-I. However, many non-
canonical cases that do not follow this paradigm have been
observed in the literature.35 For instance, numerous pMHC
crystal structures have been observed that show N-terminal
extension patterns36−38 or C-terminal extension patterns.39,40

The majority of pMHC modeling tools do not identify such
cases, and the predicted structures that they provide do not
match the non-canonical geometries. For example, while
DockTope26 reports near-native results for the majority of
the modeled structures, the authors specifically report that they
fail on one case: a peptide variant from the MART-1/Melan-A
protein37 (sequence: LAGIGILTV, PDB code: 2GTW). This
peptide adopts a non-canonical, bulged conformation, caused
by the leucine in the first position assuming the anchor
position in the B pocket. As DockTope lacks the ability to
identify such non-canonical cases, it models the peptide as a
canonical case, with the alanine in the second position
assuming the anchor position, deviating a lot from the ground
truth as a result. Recently, PANDORA30 applied NetMHC-
pan4.17 as a proxy, in order to identify such non-canonical
cases. The authors show that they provide better structural
models for the cases where NetMHCpan4.1 correctly identifies
a non-canonical case.

In addition, there is a significant number of peptides in the
immunopeptidome that exhibit one or more chemical
modifications. Specifically, the topic of MHC-bound peptides
exhibiting PTMs has been extensively discussed.41,42 In the
past few years, a plethora of studies are scanning cell lines in
the immunopeptidome, emphasizing the importance that
peptides that undergo PTMs hold in the adaptive immune
response.43,44 It is now known that PTMs can have a
substantial impact in T-cell recognition, and could potentially
have an impact in therapeutics, with works emphasizing the
fact that many neoantigens exhibit PTMs.45,46 With the advent
of mass spectrometry and the subsequent increase in pMHC
data with PTMs included, sequence-based methods have made
breakthroughs in binding affinity/MHC presentation predic-
tion of peptides exhibiting PTMs.47,48 However, the prediction
of the structural effects that these subtle modifications will
cause, and how those affect T-cell recognition, is still a very
challenging problem. Moreover, most of the pMHC structural
modeling approaches discussed above are not able to model
peptides with PTMs. Recently, Bloodworth et al.25 extended
the Rosetta FlexPepDock ab initio protocol, in order to
support structural modeling of post-translationally modified
peptides, making this the only pMHC structural modeling tool
that models pMHC complexes including PTMs. While the
authors report results averaging below the 2 Å threshold, the
pMHC modeling running times are reported to be 8−16 h
long, making the method non-applicable in rapid pMHC
modeling scenarios.
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In this work, we present APE-Gen2.0, a fast and accurate
pMHC structural modeling tool. APE-Gen2.0 not only
improves pMHC modeling performance but also expands the
pMHC modeling repertoire to non-canonical cases, both in
terms of peptide geometries and chemical modifications. By
employing already established tools and plugins for modeling
PTMs,49 APE-Gen2.0 is able to provide, within minutes,
geometrical models for peptides exhibiting PTMs common to
the pMHC system, such as phosphorylation, citrullination,
nitration, and acetylation, among others.41,42 To prove that
APE-Gen2.0 structures are useful in downstream tasks, we
experimentally determined binding affinities for a small set of
phosphorylated peptides and their non-phosphorylated
counterparts. In this data set, APE-Gen2.0 outperforms

sequence-based approaches on the task of correctly identifying
the positive/negative effects that PTMs cause in pMHC
binding affinity. Moreover, by developing a dedicated peptide
anchor identification module that correctly identifies non-
canonical anchor placements in the majority of the cases, APE-
Gen2.0 provides correct structural predictions for non-
canonical peptide geometries, as confirmed by the reproduc-
tion of crystal structures. Finally, in order to facilitate structural
pMHC modeling, APE-Gen2.0 is provided as a web server and
is freely available at https://apegen.kavrakilab.org.

2. RESULTS AND DISCUSSION
2.1. APE-Gen2.0 Accurately Reproduces pMHC

Structures through a Combination of Backbone

Figure 1. APE-Gen2.0 produces high-quality (≤1 Å) pMHC models. (A) Overall workflow of APE-Gen2.0. (B) Example of the conformational
ensemble output of APE-Gen2.0 (depicted in red), given an input peptide sequence and an MHC allotype (example here is PDB code: 1DUZ,
sequence: LLFGYPVYV, MHC: HLA-A*02:01, structure is depicted in blue). (C) APE-Gen2.0 performance on the leave-one-PDB-out cross-
validation scenario. Results are shown for both the best scored conformation from the ensemble and also the conformation with the lowest ligand
root mean square deviation (L-RMSD). (D) Around 30% of the best L-RMSD conformations produced by APE-Gen2.0 are a product of the loop
sampling and scoring process, and around 70% are a product of peptide threading. (E) Comparison of the two backbone reconstruction approaches
used by APE-Gen2.0 in regards to the sequence similarity of peptides that are found in pMHC structures in the APE-Gen2.0 database. The loop
generation box contains the sequence similarity values for the 30% of peptides where loop generation performs best in regards to best L-RMSD.
The other 70% is contained in the threading box. The loop sampling and scoring process tends to perform better when the peptide template/
templates that are chosen exhibit low sequence similarity to the peptide that is to be modeled.
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Sampling and Threading. APE-Gen2.0 is an evolution of
the previous version,28 with modifications and improvements
present in multiple parts of the previously established pMHC
modeling workflow (Figure 1). Specifically, the ab initio
modeling process of the previous APE-Gen version is now
used in tandem with a peptide backbone threading process,
which utilizes geometrical information from the middle portion
of the bound peptide. This is depicted in the two branches of

Figure 1. As input, APE-Gen2.0 receives a peptide amino acid
sequence, as well as an MHC allotype from any organism. As
output, APE-Gen2.0 provides an ensemble of plausible peptide
conformations bound to the MHC binding cleft (Figure 1), as
well as a ranking of these conformations, based on protein−
ligand scoring functions.50−52

An improvement of APE-Gen2.0 over its predecessor is the
creation of an expanded template structure database, in order

Figure 2. Leave-one-PDB-out comparison of APE-Gen2.0 to other pMHC modeling tools. L-RMSD comparison between APE-Gen2.0 and
three different pMHC modeling tools from the literature. On the left side, violin plots (with the inserted box plot) depict the distribution of L-
RMSD values for each method. On the right side, per-PDB-code L-RMSD comparisons are depicted. Each point represents a unique structure and
its coordinates represent L-RMSD values from APE-Gen2.0 and a different pMHC modeling tool. Percentages in green denote the percentage of
structures for which APE-Gen2.0 exhibits better L-RMSD results. Percentages in blue denote the percentage of structures for which APE-Gen2.0 is
outperformed. (A) APE-Gen2.0 comparison with its previous version. Both the best scored model and the best model in terms of L-RMSD to the
crystal structure are considered. (B) APE-Gen2.0 comparison with PANDORA. Both the best scored model and the best model in terms of L-
RMSD to the crystal structure are considered. L-RMSD values for PANDORA are taken from it’s original publication.30 (C) APE-Gen2.0
comparison with DockTope. Only the best scored model is being considered in this benchmark (best model results are not provided in the
DockTope paper). L-RMSD values for DockTope are taken from its original publication.26
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for it to be used in the peptide threading step. In particular, we
created a database of pMHC crystal structures, collected from
public databases (see Methods). The data collection and
filtering process resulted in a total of 699 pMHC structures,
with no duplicates (see Methods). We subsequently used this
template database in order to assess the modeling accuracy of
APE-Gen2.0. More specifically, we performed a cross-docking
scenario, using the leave-one-PDB-out cross-validation scheme
proposed in Marzella et al.30 We removed structures from the
evaluation that contain additional chains, foreign molecules, or
any modifications that might alter the structural pose of the
peptide (see Methods), resulting in a total of 569 structures for
evaluation. L-RMSD results can be seen in Figure 1 (detailed
L-RMSD results can be found in the Supporting Information
file Data S1). More than 50% of the conformations produced
by APE-Gen2.0 are high-quality conformations (≤1 Å). It is
interesting that the difference in modeling quality distributions
between the best scored model and the best L-RMSD model
from the ensemble does not differ by a big margin. That hints
to the fact that Vinardo,50 the default scoring function included
in APE-Gen2.0 (see Methods), even though it is designed for
smaller ligands, is properly ranking the peptide conformations
in terms of L-rmsd to the crystal structure.

It is important to note that the loop sampling and scoring
protocol and the peptide threading protocol do not operate as
mutually exclusive and should be used in tandem. In fact,
almost one in three conformations produced by APE-Gen2.0
that are closer to the crystal structure in terms of L-RMSD are
produced by the backbone loop sampling process (Figure 1).
We wanted to further investigate the distinct features that this
30% of structures, generated by backbone sampling and
optimization and outperforming the peptide threading process,
have. Figure 1 shows the peptide sequence identity percentage
for when each backbone construction method performs best.
Peptide threading performs better than backbone loop
sampling and optimization when the sequence of the peptide
to be modeled has a large sequence identity with a peptide in
the database. On the contrary, when the sequence identity is
low, it is more probable that backbone loop sampling yields
better results. The above observation necessitates concurrent
usage of loop sampling/scoring and peptide backbone
threading during modeling.

Lastly, a good choice of backbone sampling to backbone
threading ratio ensures that sufficient variability exists in the
generated peptide loops and also ensures the best possible
ensemble in terms of accuracy. We found that if the resulting
ensemble generated by APE-Gen2.0 contains 75−80%
conformations stemming from the backbone sampling process
and 20−25% from the peptide threading protocol, then this
results in the best possible L-RMSD to the crystal structure
(Figure S1). Specifically, the mean best L-RMSD of the
workflow that combines both peptide threading and backbone
loop sampling is lower than the mean best L-RMSD of the
peptide threading only workflow and much lower than the
mean best L-RMSD of the ab initio modeling. This is true for
Cα, backbone, and full-atom L-RMSD (Figure S1). It is worth
underlying though that by employing backbone sampling,
there is a small L-RMSD performance drop when considering
only the best scored conformation. This hints that the scoring
function used in APE-Gen2.0 is not impairing sampling, but it
might sometimes impair the proper ranking of conformations
within the predicted ensemble (Figure S1). However, the
instances of incorrect scoring are quite rare. As such, the

backbone sampling to peptide threading ratio value that we
employed in the rest of the experiments for this paper was
80%.

2.2. APE-Gen2.0 Outperforms Other pMHC Modeling
Tools. We wanted to assess how APE-Gen2.0 is performing in
comparison to other pMHC modeling tools in the literature.
We benchmarked APE-Gen2.0 with a selection of pMHC
modeling tools that is diverse in regards to the algorithms and
methodologies that are employed: APE-Gen, PANDORA, and
DockTope. The previous version of APE-Gen is using an ab
initio, sampling and scoring approach, without prior knowledge
or template guidance for the middle portion of the peptide.28

PANDORA is a homology modeling-based pMHC modeling
tool that is using MODELLER53 functions and protocols to
predict pMHC complexes.30 Finally, DockTope is a web-based
tool that is predicting pMHC structures using a molecular
docking/energy minimization protocol.26 The aforementioned
pMHC structural modeling tools were evaluated based on two
different methodologies. First, we test APE-Gen2.0 by
comparing its performance to the results reported by other
tools in the literature, using a leave-one-PDB-out experiment
as previously proposed.30 However, as each tool reports results
on different sets of pMHC structures, we also wanted to run all
the tools on the same benchmark data set. For this reason, we
constructed a smaller left-out test data set. We did this by
selecting a set of PDB codes that were not found in template
databases created by other pMHC modeling tools, in this way,
creating an unbiased evaluation (the reader can find more
details on the two evaluation schemes in Methods).

Aggregated L-RMSD results for all methods, as well as per-
PDB-code L-RMSD comparisons for the leave-one-PDB-out
experiment are depicted in Figure 2 (see Tables S1−S3 in
Supporting Information for median and mean L-rmsd values).
Emphasizing on the comparison of APE-Gen2.0 to its
predecessor (see Figure 2), it can be seen that APE-Gen2.0
does significantly better, both in terms of the best scored
conformation, as well as in terms of the best generated
conformation in terms of closeness to the crystal structure. The
reason for this is the employment of crystal structures as
templates during the modeling process (peptide backbone
threading). APE-Gen, it being mostly a loop sampling
approach, can potentially produce backbones that are far
from the crystal structure, causing many L-RMSD values to
increase beyond the acceptable threshold. When compared to
PANDORA, APE-Gen2.0 presents a better performance in
terms of mean and median L-RMSD. APE-Gen2.0 also
outperforms PANDORA when comparing on a per-PDB-
code basis in all categories (Figure 2). While APE-Gen2.0 still
outperforms PANDORA in terms of median L-RMSD when
considering the best possible conformation to the crystal
structure, PANDORA slightly outperforms APE-Gen2.0 in
terms of overall mean Cα and backbone L-RMSD (Supporting
Information, Table S2). However, this is not true when
considering the best scored conformation. It follows that, while
the two tools are mostly comparable when considering the best
L-RMSD conformation, PANDORA’s scoring function,
molpdf,30,53 is not properly ranking the produced conforma-
tions. Lastly, APE-Gen2.0 also outperforms DockTope in all
areas (Figure 2C and Table S3). When considering Cα L-
RMSD performance only, DockTope still produces high-
quality conformations. However, it is restricted to very few
alleles,26 and it is much slower in terms of performance time.
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On the contrary, APE-Gen2.0 can provide a prediction for any
allele, within minutes.

Per-PDB-code L-RMSD comparisons in regards to the left-
out data set are depicted in Figure 3. Comparisons here are
done on the basis of the top ranking conformation provided by
each tool (best scored model), which is a more realistic
scenario when the crystal structure is not known (best L-
RMSD performance on the same test data set is shown in
Figure S2A,B). Similar to the leave-one-PDB-out experiment,
APE-Gen2.0 outperforms its predecessor (Figure 3), as well as
PANDORA (Figure 3). When considering the best L-RMSD
conformation, APE-Gen2.0 still outperforms APE-Gen (Figure
S2A); however, PANDORA performs better (Figure S2B).
This leads us to the same conclusion as in the leave-one-PDB-
out experiment, that is, molpdf, the scoring function that is
used internally by PANDORA for pose selection and ranking,
is not properly ranking PANDORA’s produced conformations,
with APE-Gen2.0 performing better in this more realistic
scenario (Figure 3).

Recent studies have suggested that solely looking on L-
RMSD values might be misleading, as the aforementioned
pMHC structural modeling methods might be introducing
physically implausible structures.54 Therefore, we wanted to
quantify such plausibility in APE-Gen2.0 structures and how
they compare to structures generated by other pMHC
structural modeling tools. We used MolProbity, a quality

assessment tool that validates structures and structural models
on a global and on a local scale.55 More specifically, we used
the MolProbity score metric, a single score corresponding to
each structural model (see Methods). The MolProbity score
(lower is better) is a log-weighted combination of identified
clashes, the percentage of Ramachandran outliers, as well as
the percentage of side-chain rotamers of bad quality56 (see also
Methods). Interestingly enough, APE-Gen2.0 produces a
higher MolProbity score than its predecessor (Figure 3).
However, even though the MolProbity score is not designed to
be a threshold-based metric, the MolProbity score threshold of
2.0 has been previously used by the authors of MolProbity for
potential loop fragment conformations’ selection for filling
gaps in protein structures.56 From this perspective, even
though higher than its predecessor, APE-Gen2.0 still produces
good MolProbity scores, with much better L-RMSD results
compared to the previous version (Figure 3). The same,
however, is not true for PANDORA, as the median MolProbity
score for structures generated by PANDORA is greater than
2.0 and much higher than APE-Gen2.0 (Figure 3C).
Specifically, manually inspected PANDORA structures exhibit
a substantial amount of steric clashes and a substantial
percentage of Ramachandran outliers. The same results and
conclusions can be observed when considering the best L-
RMSD conformation (Figure S2C,D).

Figure 3. Comparison of APE-Gen2.0 to other pMHC modeling tools on a left-out test set. L-RMSD and MolProbity score comparisons
between APE-Gen2.0 and two different pMHC modeling tools from the literature. Comparisons are done using top ranking conformation provided
by each tool (best scored model). For per-PDB-code L-RMSD comparisons, each point represents a unique structure and its coordinates represent
L-RMSD values from APE-Gen2.0 and a different pMHC modeling tool. Percentages in green denote the percentage of structures for which APE-
Gen2.0 exhibits better L-RMSD results. Percentages in blue denote the percentage of structures for which APE-Gen2.0 is outperformed. Violin
plots (with the inserted box plot) depict the distribution of MolProbity score values for each method. (A) Per-PDB-code L-RMSD comparison of
APE-Gen2.0 to its previous version. (B) Per-PDB-code L-RMSD comparison of APE-Gen2.0 to PANDORA. (C) MolProbity score comparison of
APE-Gen2.0 to its previous version (p < 0.0001). (D) MolProbity score comparison of APE-Gen2.0 to PANDORA (p < 0.0001).
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2.3. Anchor Identification Module Allows Detection
and Modeling of Noncanonical Peptide Geometries. In
the majority of the structures deposited at PDB, independently
of the peptide length, the N-terminus anchor corresponds to
the amino acid in position 2 of the peptide, and the C-terminus
anchor is the amino acid in the last position of the peptide.
However, there have been many studies that have reported
non-canonical peptide anchor configurations, either in the N-
terminus side36,37 or the C-terminus side.39,40 Detecting and
correctly modeling these cases can strengthen the accuracy of
pMHC modeling tools and expand the pMHC modeling
repertoire. We collected pMHC binding motifs generated by
MHCflurry2.0,6 as well as relative binding affinity contribu-
tions generated by the PMBEC matrix study57 (see Methods).
As previously proposed by Guillaume et al.,35 we also noticed
that either position-weight matrices derived by peptide binding
motifs or relative binding affinity contributions can be
predictive of noncanonical anchor conformations. Specifically,
in Figure 4, it is shown that simple differences of amino-acid
occurrence frequencies from peptide motifs can identify that,

in the case of the MART-1/Melan-A peptide variant
LAGIGILTV,37 it is leucine, the first amino acid in the peptide
sequence, that assumes the anchor position. When considering
HLA-A*02:01, leucine is prominent in position 2 of the
peptide binding motif (corresponding to the B pocket),
without being overly frequent in position 1 of the binding
motif (corresponding to the A pocket). At the same time, while
alanine is not overly frequent in position 3 of the binding
motif, it is almost never expressed in the B pocket. As such, we
can assume that leucine will overtake the B pocket anchor,
resulting in a bulged conformation and a non-canonical
geometry. A similar reasoning, from the scope of binding
affinity contributions, is followed in Figure 4 with the avian
influenza A (H7N9) virus-derived peptide TMVMELIRMIK,
bound to HLA-A*11:01.36 From the relative binding affinity
contribution matrix, we can see that threonine’s absence in
position 2 contributes to substantial binding affinity loss. At
the same time, methionine can be critical for good binding in
position 2 but can also be critical in position 3. As such, we
could hypothesize that threonine will assume the B pocket

Figure 4. APE-Gen2.0 correctly identifies and models non-canonical peptide geometries. (A) Simple frequencies from peptide binding motifs
can be indicative of non-canonical anchor placements (the example here is the MART-1/Melan-A peptide variant LAGIGILTV binding to HLA-
A*02:01). (B) Relative binding affinity contributions taken from the PMBEC matrix study57 can also be indicative of non-canonical anchor
placements (the example here is avian influenza A (H7N9) virus-derived peptide TMVMELIRMIK binding to HLA-A*11:01). (C) Confusion
matrices of three different methods on non-canonical anchor identification. (D) Structure prediction of LAGIGILTV bound to HLA-A*02:01 by 3
different pMHC modeling tools (target structure in blue). (E) Structure prediction of TMVMELIRMIK bound to HLA-A*11:01 by 3 different
pMHC modeling tools (target structure in blue).
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anchor, shifting methionine to the right, resulting in a non-
canonical geometry. We subsequently devised a simple
algorithm that, by using simple thresholds for relative binding
affinity contribution differences, separates canonical/non-
canonical cases (see Methods and the Supporting Information
text section in the Supporting Information). These thresholds
are kept intentionally simple and linear, in order to avoid
overfitting and maintain explainability. A visual interpretation
of the relative binding affinity thresholds and the simple

boundaries that are formed as a result can be seen in Figure S3
in Supporting Information.

To quantify the overall improvement of our anchor
identification method in comparison to NetMHCpan4.1,7

which is used as a proxy for anchor identification in
PANDORA,30 we benchmarked both approaches in our
constructed crystal structure database. As relative binding
affinity contributions are not available for all alleles in the
database, we kept only MHC structures for which the relative

Figure 5. APE-Gen2.0 modeling of post-translationally modified peptides. (A) L-RMSD performance on a set of post-translationally modified
peptides bound to MHCs. Different colors correspond to different PTM categories. Both the best scored model and the best model in terms of L-
RMSD to the crystal structure are considered. (B) Confusion matrix denoting the performance of APE-Gen2.0 on the small IEDB data set of
phosphorylated/non-phosphorylated peptides, in the task of identifying positive/negative binding effects in the presence/absence of
phosphorylation. (C) Confusion matrix denoting the performance of APE-Gen2.0 on the small IEDB data set of citrullinated/non-citrullinated
peptides, in the task of identifying positive/negative binding effects in the presence/absence of citrullination. (D) APE-Gen2.0 is compared to
sequence-based methods NetMHCphosPan1.047 and PhosMHCpred48 on the in-house data set of 19 phosphorylated/non-phosphorylated peptide
pairs. The y-axis in the beeswarm plots denotes the difference in predictions for a phosphorylated/non-phosphorylated peptide pair. Ideally, peptide
pairs where PTM results in better binding (light green)/worse binding (dark blue) should be separated.
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binding affinity contributions are available. This resulted in 404
data points in total, out of which 26 data points exhibit non-
canonical anchor conformations. Note that one of these
structures (PDB code: 5TRZ) exhibits non-canonical con-
formations in both the N-terminus and C-terminus, therefore
this structure counts as two separate non-canonical data points.
Confusion matrices in Figure 4 show that relative binding
affinity contribution differences predict much more non-
canonical cases correctly than NetMHCpan4.1. This is
reflected on the calculated F1 scores too, as the F1 score for
NetMHCpan4.1 is equal to 0.70 compared to the F1 score
when using the relative binding affinity contribution matrices,
it being equal to 0.88. We further compared the performance
of our simple algorithm based on relative binding affinity
contributions (as seen in Figure 4) compared to the
performance of the expert system based on peptide binding
motifs (as seen in Figure 4). Relative binding affinity
contributions end up in fewer false positives (Figure 4).

The correct identification of non-canonical anchors in APE-
Gen2.0 allowed us to fetch the appropriate peptide template
for the anchor alignment step. To clearly show this, we used
APE-Gen2.0 to model the two aforementioned noncanonical
cases (PDB codes: 2GTW, 4MJ6). In Figure 4, we can see that,
contrary to APE-Gen, which is not able to properly model non-
canonical conformations, APE-Gen2.0 correctly predicts the
non-canonical configuration and outputs a correct structural
model. It is important to underline here that because
NetMHCpan4.1 cannot identify the correct anchor placement,
PANDORA ends up forcing Ala2 in the B pocket. Similarly, in
Figure 4, the homologue that is being fetched by PANDORA,
the peptide TIAMELIRMIK, while very similar to the H7N9
virus-derived peptide in terms of sequence, is very different
structurally (PDB code: 4MJ5). In contrast, APE-Gen2.0
correctly identifies the non-canonical anchor and ends up
modeling the H7N9 virus-derived peptide with the correct
anchor placement.
2.4. APE-Gen2.0 Models Post-Translationally Modi-

fied Peptides in a Rapid and Accurate Manner. By
incorporating the PyTMs tool49 in the APE-Gen2.0 modeling
workflow, we are able to model pMHC complexes that include
PTMs rapidly and accurately. We collected a small set of
peptides bound to MHCs from the PDB that exhibit at least
one PTM (see Methods). In Figure 5, performance of APE-
Gen2.0 on Cα, backbone, and full-atom L-RMSD on this small
set of pMHC complexes is depicted (see Table S4 in
Supporting Information for L-RMSD results per PDB code).
We can see that the Cα L-RMSD median is below 2 Å,
indicating that APE-Gen2.0 correctly models pMHC com-
plexes that exhibit PTMs, with only few structures surpassing
that threshold. MolProbity scores for all aforementioned
structures were also calculated, in order to assess the biological
plausibility of the structures. We can observe an obvious
separation between phosphorylated peptide structures and
structures exhibiting either citrullination or nitration (see
Figure S4). We hypothesize that the OpenMM energy
minimization step, which is only supported currently for
phosphorylated peptides (see Methods), is crucial in providing
structures that are free of steric clashes, Ramachandran
outliers, and bad-quality side-chain rotamers.

We also compared APE-Gen2.0 modeling with the only
method other than APE-Gen2.0 that models pMHC
complexes with PTMs, Rosetta FlexPepDock,25 on a subset
of phosphorylated pMHC complexes. Backbone L-RMSD

results can be seen in Table S5 for four different pMHC
complexes. In general, all methods are competing with each
other, with no clear winner. However, it is worth mentioning
that the time of modeling with the Rosetta FlexPepDock
protocol is reported to be 10−16 h long,25 while APE-Gen2.0
can provide a model within minutes.

Additionally, we wanted to check whether APE-Gen2.0
structural models hint at the downstream effects that the PTM
might have on the pMHC complex, particularly on binding
affinity. We collected a small set of phosphorylated peptides
from the IEDB that also come with their non-phosphorylated
counterpart, comprising two alleles HLA-A*02:01 and HLA-
B*40:02, for which the effects that phosphorylation has in
binding affinity are known.42,58,59 The aforementioned
phosphorylated/non-phosphorylated pairs were modeled
using APE-Gen2.0, using a 5-experiment protocol, where the
modeling is repeated 5 different times to enhance robustness
(see Methods). After modeling, for each phosphorylated/non-
phosphorylated pair, we compare the two values resulting from
the aforementioned protocol. If the score is better for the
phosphorylated peptide in comparison to its non-phosphory-
lated counterpart, it is predicted that binding affinity is to be
enhanced as a result of the PTM and vice versa. The confusion
matrix resulting from this classification can be seen in Figure 5.
APE-Gen2.0, except one case of a false negative, predicts
correctly whether a phosphorylation will result in a better
binding affinity. While APE-Gen2.0 incorrectly classifies as
positives two of the negative instances, the area under the
ROC curve (AUC) performance is equal to 0.798, a value
bigger than random prediction (AUC = 0.5). It is important
here to note that critical factors for this performance include
considering both the whole ensemble produced by APE-
Gen2.0 and the OpenMM optimization step (see Methods).
Omitting one of these steps results in a close to or even below
0.5 average AUC (Figure S5A). Additionally, these factors do
not just contribute to the better AUC but to the overall
stability of the scoring itself. Specifically, looking at the left part
of Figure S5A, it is evident that scores calculated by optimizing
the structures through OpenMM and considering the whole
ensemble when scoring are not just the best scores in terms of
performance but also the most stable scores, resulting in >0.5
AUCs for all 5 experiments.

The same experiment was performed with a small set of 13
HLA-A*02:01 citrullinated peptides from the IEDB (see
Methods). It is important to note that the force field
parameters that are used for the OpenMM energy
minimization step do not support the citrullinated arginine
(see Methods). As such, for the case of citrullination, including
any PTM that is not phosphorylation, the optional OpenMM
energy minimization step cannot be performed. This shows in
the confusion matrix results in Figure 5. Even though the
calculated AUC given the ensemble of generated APE-Gen2.0
conformation is 0.7, a value better than random prediction, the
results are much more unstable. We hypothesize that the lack
of an optimization/energy minimization step in the case of
citrullination reduces accuracy. Moreover, AUC values for the
citrullinated peptides fluctuate between experiments, with
some experiments producing AUC values equal or below 0.5
(Figure S5A). This means that the lack of an optimization/
energy minimization step not only reduces accuracy but also
reduces stability. Future work will emphasize using force field
parameters that support a larger number of PTMs,60 as relaxed
structures prove to be more useful for downstream analysis.
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The full list of citrullinated/non-citrullinated peptide pairs
from IEDB, as well as the Vinardo scores for different APE-
Gen2.0 runs can be found in Data S4 in Supporting
Information.

To further confirm the potential of using the energy-
minimized ensemble of APE-Gen2.0 conformations for
downstream tasks, we further employed a small in-house
data set of 19 phosphorylated peptides from 5 different alleles,
also including their non-phosphorylated counterpart (see
Methods). The results of this comparison can be seen in
Figure 5 (see Data S5 in Supporting Information for the full
list of peptides). Similar to the set of IEDB-deposited
phosphorylated peptides, scoring the OpenMM optimized
generated ensemble can distinguish between an increase and
non-increase in binding affinity in the presence/absence of a
PTM. As before, considering the optimized ensemble yields
not only the best positive/negative instance separation results
(Figure S5B) but also the most stable ones throughout
different experiments in regards to performance (Figure S5C).
Moreover, we wanted to see how already existing sequence-
based binding affinity prediction methods expanded to
phosphorylated peptides, specifically, NetMHCphosPan1.047

and PhosMHCpred48 can detect changes in binding affinity
due to the existence of a PTM and how they compare to our
scoring protocol. These methods provide an ideal comparison
as, contrary to the IEDB data set, the methods were not
exposed to the in-house peptides that we are testing, making
this an unbiased comparison. Interestingly enough, sequence-
based methods are not able to rank the positive and negative
instances as good as APE-Gen2.0. APE-Gen2.0 can almost
clearly separate the positive and negative instances, with the
positive instances rising mostly to the top of the beeswarm plot
(Figure 5).
2.5. A Web Server to Facilitate pMHC Modeling. To

further make the tool accessible and facilitate structural pMHC
modeling, APE-Gen2.0 is offered as a freely accessible web
server at https://apegen.kavrakilab.org. The user interface is
comprised of two different tabs: the job submission tab and the
results tab. In the job submission page (Figure 6), users can
define the peptide sequence and the MHC allotype of their
choice. Additionally, users can define specific parameters, such
as the preferred scoring function to be used during the
molecular docking step, as well as the total number of

conformations that they want to generate, among others. All
these options are provided in a clean and user-friendly way, to
accommodate for both basic and advanced users of the tool. In
the results tab, the user can visualize the results generated from
the APE-Gen2.0 workflow (Figure 6). Individual peptide
conformations bound to the MHC of choice can be visualized,
along with the scoring function results. The whole pMHC
structural ensemble can then be downloaded and be utilized in
further downstream analysis.

3. CONCLUSIONS
The field of structural modeling of pMHC complexes, ever
since its beginnings,21 has evolved dramatically, with multiple
methods and tools being published at an increasing rate.61

However, there are many pMHC pairs that cannot be modeled
accurately by current pMHC modeling tools, most notably,
peptides that exhibit PTMs or peptides that assume non-
canonical geometries in the MHC-I cleft. In this work, we have
developed APE-Gen2.0, an update from the original version of
the tool.28 APE-Gen2.0 combines and extends the best of the
methodologies of previously published pMHC tools to further
increase pMHC modeling accuracy (Figure 1). It also
innovates in expanding the pMHC modeling repertoire to
non-canonical cases in terms of peptide geometries and
chemical modifications.

APE-Gen2.0 provides a conformational ensemble that stems
from both peptide backbone threading (resulting backbones
are closer to the chosen template) and peptide backbone
sampling (resulting backbones diverge from the chosen
template). The combination of the backbone sampling and
peptide threading processes ensures that, no matter the
sequence or structural homology level of the peptide that is
to be modeled with other peptide structures in the database,
enough conformational space is adequately explored. This is
done with no additional computational cost, as peptide
threading modifies in place the peptide amino acids with no
added computational burden, and the algorithm that is being
used to sample backbones is very fast (see Methods for more
details). The presence of peptide conformations stemming
from both backbone construction processes provides the best
overall accuracy in terms of best L-RMSD (Figure S1).
Moreover, looking into the best conformations produced by
APE-Gen2.0 in the leave-one-PDB-out cross-validation experi-

Figure 6. APE-Gen2.0 web server. (A) Job submission page. Users can type in the peptide sequence/MHC allotype pair, along with the chosen
APE-Gen2.0 modeling parameters. (B) APE-Gen2.0 modeling results page. Users can visualize different conformations from the produced
ensemble, as well as download the ensemble for downstream analysis.
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ment, we see that, although the majority of those are stemming
from the peptide threading process, a significant portion of
those also comes from backbone sampling (Figure 1). Thus,
the concurrent usage of both backbone construction processes
is crucial for the best results in terms of accuracy and diversity
of conformations.

It is important though to note that, while the combination of
backbone construction processes gives the best L-RMSD
results, in some cases, the APE-Gen2.0 scoring function fails to
properly rank the conformations produced by the ensemble.
This leads to the combination of backbone construction
processes underperforming the simple peptide threading
process when considering only the best conformation in
terms of score (Figure S1). As such, future work will involve
the creation of more accurate pMHC scoring functions that are
accustomed to the intricacies of the pMHC system. The
authors of GradDock,27 as well as the study by Keller et al.62

have already produced ideas leading to scoring functions that
are pMHC-specific. While the validation of those previous
works is limited to specific alleles or scenarios, this is still a
promising research avenue to pursue.

APE-Gen2.0 also excels in identifying cases of peptides that
assume non-canonical geometries when bound to MHC-I. We
prove that by imposing simple thresholds in either amino-acid
occurrence frequencies found in peptide motifs or in relative
binding affinity contributions of amino acids in each peptide
position (Figure S3), the majority of cases of irregular
geometries can be identified (Figure 4). In regards to previous
approaches attempting to identify those cases, PANDORA30

employs NetMHCpan4.1 to identify non-canonical anchor
configurations. Briefly, given a peptide sequence and an MHC
allotype, NetMHCpan4.17 determines the 9-mer binding core
of the peptide that results in the best binding affinity out of all
binding affinities predicted by all possible binding cores. While
this can be a good proxy for non-canonical anchor
identification, it is not specific to anchor identification. The
previously discussed example, the infamous 9-mer MART-1/
Melan-A peptide variant bound to HLA-A*02:0137 (Figure 4),
exhibits a non-canonical configuration in the N-terminus part,
where, it is the leucine in position 1 that acts as the anchor in
the B pocket. This, in principle, cannot be identified by
NetMHCpan4.1 as a non-canonical configuration, as the 9-mer
binding core of the peptide with the biggest binding potential
is the peptide itself. For similar reasons, the avian influenza A
(H7N9) virus-derived peptide TMVMELIRMIK, bound to
HLA-A*11:0136 (Figure 4), although it exhibits the same non-
canonical configuration as the melanoma peptide, cannot be
identified by NetMHCpan4.1 as non-canonical. Our anchor
identification module identifies both of these cases as non-
canonical, and APE-Gen2.0 creates modeled ensembles that
follow the predicted non-canonical geometry of the crystal
structure (Figure 4). Inspired by sequence-based consensus
methods that combine many peptide binding predictors and
have shown better results in peptide binding prediction and
target identification scenarios,63−65 future work will include
combining different sources of peptide motif frequencies and
matrices (stemming from different binding affinity predictors)
and relative binding affinity contributions, in order to construct
an even more robust anchor prediction module. It is also
important to note that our proposed anchor identification
module is specialized in identifying N-terminus or C-terminus
anchor positions; however, it cannot explicitly identify
secondary anchors found in the middle portion of the peptide.

These secondary anchors have shown to arise in certain mouse
alleles, as well as certain human alleles such as the HLA-
B*08:01 allele.66,67 Even though finding the appropriate
pMHC template during modeling results in APE-Gen2.0
correctly modeling secondary anchors in the majority of cases,
we plan to expand our anchor identification module to
explicitly identify secondary anchors. It has been previously
shown that peptide binding motifs exhibit conservation in
secondary anchor positions,66 so it is highly probable that
peptide binding motif information or relative binding affinity
contribution information can also be exploited for secondary
anchor identification.

Lastly, to our knowledge, by using PyTMs,49 APE-Gen2.0 is
the first method to offer a rapid modeling protocol of post-
translationally modified peptides bound to MHC-I. We
showed that APE-Gen2.0 can provide near-native (≤2 Å)
conformations of phosphorylated, citrullinated, and nitrated
peptides within minutes (Figure 5). However, as previously
mentioned, while providing the structures is in itself important,
proving that these structures can be of use in downstream
analysis and tasks is equally important. To this end, we
collected two data sets of phosphorylated peptides and their
non-phosphorylated counterparts, a data set from IEDB and a
smaller, in-house data set. In both data sets, APE-Gen2.0
provides correct predictions in regards to the effects of the
phosphorylation on the binding affinity (Figure 5). Surpris-
ingly enough, on the smaller in-house data set and on the same
task, APE-Gen2.0 even outperforms sequence-based tools that
have been explicitly trained on the task of binding prediction of
phosphorylated peptides47,48 (Figure 5). This shows, even on a
small scale, without any explicit training or fine-tuning as done
by sequence-based methods, that structural information
obtained from pMHC models can be of invaluable help in
downstream analysis. It is important to note that a huge factor
in obtaining these results was the use of the APE-Gen2.0
ensemble output, combined with the OpenMM energy
optimization step (Figure S5). As it stands, the energy
minimization step can only be performed on peptides with
canonical amino acids or phosphorylated peptides (see
Methods). This partially explains the worse performance on
the same task in the citrullinated peptides’ scenario (Figure 5).
As such, future work will emphasize on using additional force
field parameters,60 in order to expand the OpenMM energy
minimization step to other PTMs. Additionally, as there have
already been examples in the literature that use pMHC
modeled structures to learn binding affinity13 or immunoge-
nicity labels,20 future work will emphasize modeling a larger
data set of phosphorylated peptides and use it in downstream
tasks. Given that the scoring function alone could discern
effects of the presence/absence of phosphorylation on the
binding affinity (Figure 5), we hypothesize that further fine-
tuning scoring functions on specific binding affinity labels of
phosphorylated/non-phosphorylated peptides can further
improve performance. Future work will also include expanding
the PTM repertoire of APE-Gen2.0. Currently, APE-Gen2.0
uses PyTMs, a fast and accurate tool that has, however, a finite
selection of PTMs.49 As previously done in Bloodworth et
al.,25 we plan to expand APE-Gen2.0 to more PTMs. Lastly,
future work will also include the expansion of APE-Gen2.0 to
class-II pMHCs. Specifically, we are interested in modeling
post-translationally modified peptides bound to class-II MHCs,
as PTMs are quite prominent in the class-II MHC.68,69 The
field of studying post-translationally modified peptides bound
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to MHCs and their clinical relevance has started to
flourish,43,44 and we hope that structural modeling of these
peptides in a fast and accurate way will take center stage and
further advance the field.

4. METHODS
4.1. Template Collection and Curation. APE-Gen2.0

relies heavily on a meticulously curated and labeled database of
pMHC structures. The following section describes the
collection, filtering, and labeling of these structures that are
used as templates in the pMHC modeling process.
4.1.1. pMHC Structure Collection. A collection of pMHC

class-I structures was acquired from the IMGT/3D-structur-
eDB database.11 Specifically, the IMGT receptor description
that was chosen was MH1, resulting in 1084 entries (tested on
February 2, 2023). Dubious crystal structure files that result in
parsing errors are manually inspected and subsequently
removed if they are deemed to not be adequate for further
processing. Crystal structures with missing peptides or missing
peptide residues were also removed. For each remaining file,
we follow a modified pipeline to the one already proposed in
PANDORA 30: (i) duplicate chains stemming from multiple
copies of the biological assembly are removed, (ii) files are
renumbered in terms of atom and residue indexes using pdb-
tools,70 and (iii) the β2-microglobulin is removed, as it does
not contribute to the proposed pMHC modeling process.

Moreover, we identify the following categories of crystal
structures where a factor other than the MHC molecule or the
peptide itself contributes to the conformation of the peptide:
(i) the peptide residues contain one or more PTMs or altered/
non-canonical amino acids that can lead to an altered peptide
pose in comparison with an unaltered version of the peptide,
(ii) there is an additional small molecule in the pMHC binding
cleft in close proximity to the peptide that might affect the
peptide’s structural pose, and (iii) other chains that can be
present in the crystal structure, e.g., TCRs, killer-cell
immunoglobulin-like receptors, antigen processing transporter
(TAP), tapasin, calreticulin, and ERp57, among others, that
have been shown to affect the peptide’s pose.71 We opted in
keeping all of the aforementioned structures in the APE-
Gen2.0 crystal structure database, as it was shown that they
were helpful as templates during the template selection step
(see Figure S6 in Supporting Information). For structures
belonging to categories (ii) and (iii), we manually removed the
small molecule/other chains. For any peptide exhibiting a
PTM/altered/non-canonical residue, we reverted its residue to
a canonical form based on the parent residue entry in the
PDB.12

4.1.2. MHC Allotype and Peptide Identification. To
identify the MHC allotype that is present in the PDB file,
unlike PANDORA,30 we did not use the IMGT/3D-
structureDB nomenclature, as there were valid PDB files that
had missing G-ALPHA1 and G-ALPHA2 entries (correspond-
ing to the two α-helices). Instead, we extracted the MHC α-
chain sequence from the PDB and performed a pairwise
sequence alignment to all MHCs with known sequence. The
MHC allotype with a sequence resulting in the greatest
similarity to the sequence found in the PDB file was chosen as
the MHC allotype label for this file. The peptide sequence, as
well as its length, was also extracted from the PDB file. As
previously described, PTM/altered/non-canonical residues in
the peptide sequence were converted to canonical ones based
on their parent form. Finally, if there are more than one

structures with identical peptide sequence and MHC allotypes,
only one is kept, namely, the one that has the better resolution.
As, in most cases, such structures are almost identical when
superimposed, this was done to keep the database of crystal
structures diverse but more importantly, to avoid data leakage
during the leave-one-PDB-out cross-validation evaluation. The
aforementioned data collection, filtering, and labeling process
resulted overall in 699 distinct pMHC structures.
4.1.3. Anchor Identification and Labeling. A major

decision factor for the selection of the peptide template is
the anchor placement of the peptide residues in the cleft. As
such, there was a need to develop a protocol for identifying
and labeling, given a crystal structure in the database, the
peptide residues that assume the anchor positions in the MHC
binding cleft. We identified the following features that are
descriptive of a peptide anchor:

• Relative accessible surface area: For each peptide residue,
the relative accessible surface area (RSA) is defined as

=
i

RSA
SASA

Max ( )i
i

SASA

where i is a given peptide residue and SASAi is the
solvent accessible surface area for this residue, denoting
the surface area of the residue that is accessible to a
solvent. MaxSASA(i) denotes the maximum value that
SASA can receive for a given residue i. This normal-
ization results in RSA values being comparable among
different residues that might have different side-chain
volumes that could skew the SASA value. Applied
directly to peptide residues, a higher RSA would imply
that a peptide residue is more exposed, while a low RSA
value would imply that the peptide residue is found deep
within the cleft and is likely to be an anchor. RSA is
computed using the NACCESS 2.1.172 tool. When
calculating the RSA, we used the default parameters of
NACCESS, and utilized a standard 1.4 Å radius probe.
The MaxSASA values are taken from the default
parameters of NACCESS. When calculating the RSA
for each peptide residue i, the rest of the residues were
removed from consideration, as neighboring peptide
residues to the residue i are sure to affect the SASA
surface.

• Distance to the β-sheet: Given that the β-sheet floor
formed by the two polypeptide α-chains is roughly
planar,73 and the bound peptide is positioned roughly
parallel to the β-sheet, we can assume that peptide
residues that are closer to the β-sheet are more probable
to be anchors. Specifically, we used the z-dist
formulation from Abella et al.74 to calculate, for each
peptide residue, its distance to the β-sheet floor.

For each pMHC structure, two major peptide anchors are
assumed. The first anchor position is located in the N-terminus
side of the peptide, and it is always placed in the B region of
the MHC binding cleft.67 The other anchor is located in the C-
terminus side of the peptide, and it is always placed in the F
region of the MHC binding cleft.67 Scanning through the APE-
Gen2.0 crystal structure database, it can be inferred that, for
the N-anchor positions, it is always the case that it is one of the
first three residues of the peptide that takes the anchor position
in the B region of the MHC. Similarly, for the C-terminus
anchors, it is always residues from position 7 of the peptide
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onward that compete for the anchor position in the F region,
independently of the peptide length.

Since the crystal structure database is too large for manually
inspecting and defining the anchors, the following protocol was
devised for anchor identification:

• The Cα and all-atom z-dist were calculated for both the
N-terminus side (first three residues) and the C-
terminus side of the peptide (position 7 of the peptide
onward). The two residues exhibiting the minimum Cα
and all-atom z-dist, one for each residue group (N and
C) are anchor candidates. The very few times Cα and
all-atom z-dist end up in different candidates, manual
inspection on these crystal structures is performed to
determine the closest residue to the β-sheet floor.

• RSA was calculated for the same residue groups (N and
C). The residue with the minimum RSA is considered
an anchor candidate.

• A residue is considered an anchor if it is a candidate
both in terms of z-dist and RSA. Manual inspection to
determine the major anchors is only necessary when the
z-dist and RSA consensus results in two different
candidates.

Out of 699 structures in our crystal structure database, the
above protocol results in 41 noncanonical cases, which we
manually inspect to confirm that they are actual non-canonical
cases.
4.2. APE-Gen2.0 Workflow. The workflow of APE-

Gen2.0 can be seen in Figure 1. It is composed of many
individual parts, which all contribute to the final ensemble of
conformations that are produced as an output of APE-Gen2.0.
In the following subsections, we will examine the individual
parts of the workflow in more detail.
4.2.1. Anchor Prediction Module. We collected relative

binding energy contribution matrices from Kim et al.57 for all
supported alleles. The relative energy contribution matrices, of
size 20 × N (20 being the 20 canonical amino acids and N
being the peptide length), denote the binding affinity
contribution of a specific amino acid aa in a specific position
pos and are calculated as specified in Kim et al.57 Similarly,
peptide motif frequencies were collected from MHCflurry2.0,6

with the 20 × N matrix denoting the frequency of an amino
acid aa in a specific position pos.

We observed that mere relative binding energy contributions
or binding affinity motif frequencies correlate with anchor
placements. We subsequently developed a formal strategy to
extract features from these matrices that are predictive of
anchor placements. More specifically, we defined the energy
difference feature ΔE(aa, pos, pos′)

=E aa pos pos E aa pos E aa pos( , , ) ( , ) ( , ) (1)

The values of the energy function E are taken from the
relative binding contribution matrices (or frequencies extracted
from peptide motifs).

For the anchor prediction module, we have designed an
expert system for identification of possible non-canonical
anchor configurations, based on the energy difference ΔE. For
each non-canonical candidate position [positions 1 and 3 for
the N-terminus side and positions 7 up to position (length of
peptide −1) for the C-terminus], we set simple and
interpretable ΔE thresholds that, when satisfied, result in a
non-canonical configuration. In Supporting Information, the
reader can find the expert system using the relative binding

affinity contributions from Kim et al.57 (similar thresholds
were defined from peptide motifs as a comparison and are not
shown in the manuscript).
4.2.2. Template Selection. Similar to the previous version,28

APE-Gen2.0 just needs the amino-acid sequence of the peptide
and an MHC allotype (or sequence) in order to predict the
bound pMHC structure. To achieve this, it needs one (or
more) peptide template (e.g., an already experimentally
defined crystal structure) as a prerequisite for the prediction
of the 3D conformation of the peptide in question, as well as
an MHC template for the receptor. In this section, we describe
in more detail the protocols used for selecting a peptide
template and an MHC template that are to be used for
predicting the final ensemble of pMHC conformations.

• Peptide template: the choice of peptide templates is
performed through a pipeline of different filtering and
scoring mechanisms:
(1) Anchor filtering: The anchor configuration of a

peptide in the MHC binding cleft is a vital
component that contributes majorly in the final
peptide conformation. If the anchor configuration
is known, the peptide template that is to be used
to guide the pMHC modeling should exhibit the
same anchor configuration. Using the anchor
prediction module, given the peptide sequence
and the MHC allotype, we predict the major
anchor placements that the peptide will have in
the MHC binding cleft. We then define the major
anchor difference, calculated as the positional,
index difference between the anchor in the C-
terminus part of the peptide and the anchor in the
N-terminus part of the peptide. As an example,
assuming a 9-mer with canonical anchor config-
uration, its major anchor difference would be 9−2
= 7. We subsequently filter and only keep peptide
templates that exhibit the same anchor difference
calculated from the anchors’ output of the anchor
prediction module. In cases when the anchor
prediction module fails to predict the anchor
placement (e.g., for alleles that peptide motifs or
relative binding affinity contributions are not
provided), no crystal structures are filtered out,
and all are considered for the next steps in the
peptide template selection.

(2) Filter by organism: Given distinct geometrical
differences between alleles of different organisms
(for example, human vs mouse alleles), no
templates corresponding to different organisms
than the MHC allotype given as input are
considered. Crystal structures from different
organisms are considered if and only if there are
no crystal structures in the template database that
correspond to the organism that the MHC
allotype input belongs to.

(3) Template similarity: For the remaining peptide
templates that passed through the anchor filter
and the organism filter discussed above, the best
candidate needs to be selected. The best candidate
is based on two distinct similarity measures: (A)
the similarity of the MHC allotype in question to
other MHCs in the crystal structure database and
(B) the similarity of the peptide sequence to be
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modeled with other peptide sequences in the
crystal structure database.

In regards to Allele Similarity (AS), there are
two main similarity measures when comparing
two alleles: similarity in terms of sequence and
similarity in terms of binding preferences.
Although there is obvious overlap between the
two, there are also distinct differences.75 In this
work, we hypothesize that, for two MHCs that
have similar binding preferences (bind to similar
peptides), it is highly probable that the MHC
binding cleft, including the possible conformation
of the peptides, also exhibits similarities in terms
of geometry. As such, for a given MHC allotype,
MHCs from the crystal structure database that
exhibit similar binding preferences are given
priority for the peptide template selection. To
quantify the similarity based on binding prefer-
ences, we download the peptide binding motifs
from MHCflurry2.0.6 We define MHC similarity
as the similarity between two MHC binding
motifs. Specifically, we interpret a peptide binding
motif as a 20 × N normalized frequency matrix (N
being the peptide length). For two different
matrices P and Q corresponding to two different
alleles, we define their AS(P, Q) as

=P Q P QAS( , ) 1
1
2 2

The second part of the equation is the Hellinger
distance76 between matrix P and Q. AS(P, Q) is
valued from [0−1], higher values denoting greater
similarity between motifs. As such, motif sim-
ilarities between the MHC allotype to be modeled
and the database of candidate templates are
calculated in a pairwise manner. Templates having
scores closer to 1 are given priority. If the MHC
allotype in question is identical to one of the
MHCs in the template database, that template
takes the most priority, since the similarity value is
the max value of 1. As there are peptide binding
motifs corresponding to different peptide lengths,6

in practice, AS depends also on the peptide length
N in question, AS(P, Q, N).

In regards to Peptide Similarity (PS), it has been
shown that, given an MHC allotype, similar
peptides in terms of sequence are also similar in
structure.16,77 As such, the peptide template to be
selected must also have as high peptide sequence
similarity as possible to the peptide that is to be
modeled. As previous work has suggested,30 the
peptide sequence to be modeled is aligned in a
pairwise manner with all the peptide sequences in
the crystal structure database. The BLOSUM62
matrix78 is used to score the pairwise alignment of
the peptide sequences. However, it is important to
underline that the alignment has to be structurally
aware, meaning that the anchors of two peptides
sequences need to be correctly aligned. As such,
we perform a pairwise sequence alignment with
anchor constraints. This is done to avoid giving
high scores to peptide templates that are very
similar in terms of sequence alignment but

different structurally. To employ the anchor
constraint pairwise sequence alignment protocol,
we use the anchors given by the anchor prediction
module. When the anchor prediction module is
not available for predictions (for example, no
relative affinity contribution matrix is available for
a rare MHC allotype), then a simpler version of
the pairwise sequence alignment is performed but
with appropriate gap penalties to avoid structur-
ally incorrect alignments.

Finally, the AS score and the PS score are
averaged to create a template similarity score TS

= +
TS

AS PS
2

Crystal structures available in the database are
ranked in decreasing order, and the template with
the highest TS score is chosen to be the peptide
template. In case of ties, one of the top scoring
peptide templates is randomly chosen.

• MHC template: The choice of MHC template will
depend on whether the MHC allotype input exists in our
crystal structure database, as well as the peptide
sequence input:
(1) MHC filtering/modeling: If the given MHC

allotype exists in the crystal structure database, we
simply filter out from consideration all the MHC
templates that host a different MHC. Otherwise,
similar to the previous version of the tool,28 the α-
chain amino-acid sequence of the MHC allotype
is retrieved and matched with all of the α-chain
sequences of the MHCs in the crystal structure
database. The crystal structure that exhibits the
greatest similarity to the allotype in terms of
sequence is used as a template for MODELLER53

to model the structure of the MHC allotype in
question. As previously mentioned,28 many
rounds of MODELLER are being run, and the
conformation with the best DOPE score is
retrieved.

(2) PS: in the scenario where multiple crystal
structures in the database exist with the same
MHC, priority is given to the ones that have
bound peptides that are closer in sequence to the
peptide to be modeled. Priority is given by
scoring, which, in turn is done by aligning, in a
pairwise manner, the sequences of the peptide in
question with the peptides bound to the MHC.
The BLOSUM62 matrix78 is employed in order to
score the sequence alignment.

4.2.3. Peptide Alignment. Given a peptide template that
contains the peptide to be used as a guide, and an MHC
template that contains the MHC of interest, they are
subsequently superimposed and aligned using PyMOL
(http://www.pymol.org/). After the alignment, the MHC
from the peptide template and the peptide from the MHC
template are removed.
4.2.4. Peptide Backbone Threading. Given the pMHC pair

resulting from the peptide alignment phase, as well as the result
of the pairwise sequence alignment with anchor constraints
during the template similarity computation step, we alter the

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.3c01667
J. Chem. Inf. Model. 2024, 64, 1730−1750

1743

http://www.pymol.org/
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.3c01667?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


amino acids of the template peptide with the amino acids of
the peptide to be modeled, by

1. Deleting residues from the peptide template that are not
to be used for the new peptide to be modeled. This can
happen only in the N-terminus and C-terminus ends of
the peptide, for instance, in scenarios where position 1 is
predicted to be used as the N-terminal anchor,37 while
the peptide template exhibits a canonical anchor
placement, and position 1 in the peptide template
needs to be deleted as a result.

2. Mutating residues from the peptide template to their
new amino-acid identities taken from the peptide to be
modeled. When, for a given position, there exists the
same amino acid in both the peptide template and the
peptide sequence to be modeled, the mutation process is
skipped for this particular position. The mutation of the
residues is performed by PDBFixer.79

3. Inserting residues that are not in the peptide template but
exist in the sequence of the peptide to be modeled. This
again can happen only in the N-terminus and C-
terminus ends of the peptide, for instance, in cases where
there is an extended configuration either in the N-
terminus38 or in the C-terminus.40 The insertion of the
residues is also performed by PDBFixer.79

We emphasize that throughout the backbone threading
process, both the peptide and the receptor are considered,
resulting in avoidance of any steric clashes that could arise in
the absence of the receptor after amino-acid mutation/
insertion.

It is important to also note here that the coined term peptide
backbone threading is a portmanteau of protein threading. The
scoring method that matches a peptide template to the peptide
to be modeled is not just using sequence information but also
structural information in terms of anchor constraints. In
practice, in the majority of the cases, peptide threading ends up
in similar results to homology modeling, in that the resulting
conformation will be very close to the peptide template.
However, the mutation approach proposed here is much faster
computationally than a homology modeling software like
MODELLER,53 as there is no need for a sequence alignment
or a refinement step, especially since all refinement steps are
applied later in the APE-Gen2.0 workflow (Figure 1).
4.2.5. Backbone Sampling and Scoring. To avoid ending

in potentially high modeling error in case the chosen peptide
template is not appropriate for peptide threading, we keep a
modified version of the loop sampling approach developed in
the previous version of the tool28 Specifically, a big number of
peptide backbone conformations are generated using the
Random Coordinate Descent (RCD) algorithm.29 Contrary to
the previous APE-Gen version,28 we are generating a much
larger set of backbone conformations (the default value is 5000
in comparison to the previous value of 100). This is done with
very little computational cost, as RCD generates potential
conformations really fast, outperforming Cyclic Coordinate
Descent and other loop methods.80 However, not all peptide
conformations are used downstream, as docking/optimizing/
scoring all the generated loops would be costly in terms of
computation time. Instead, the backbone conformations
produced by RCD are ranked by score that reflects the
goodness of the loop. Only the top conformations are used
downstream. Different scoring functions are being employed
for this step and are part of APE-Gen2.0, namely, statistical

potentials such as ICOSA81 and KORP82 that operate only on
backbone atoms. Moreover, L-RMSD to the template structure
is also used. While this option falls under the paradigm of the
resulting conformations being closer to the template, still,
enough backbone diversity is generated. Finally, as previously
proposed,28 the resulting top backbone conformations
obtained go through a final side-chain addition step using
PDBFixer.79

4.2.6. Post-Translational Modifications. After the pMHC
complexes are obtained from the peptide threading and RCD
backbone sampling steps, PTMs are also added to the peptide
when applicable. PTMs are being added through the PyMOL
plugin PyTMs.49 The PTMs that are currently supported in
APE-Gen2.0 are acetylation, carbamylation, citrullination,
cystein oxidation/dioxidation/hydroxidation, di/trimethyla-
tion, methionine oxidation, nitration, nitrosylation, phosphor-
ylation, and proline hydroxylation.
4.2.7. Energy Minimization and Scoring. The final step to

the APE-Gen workflow, as the previous version,28 involves the
optimization of the peptide conformation in the MHC cleft
using one of the scoring functions provided by SMINA.52

Vinardo50 is being used by default, but Vina51 is also available
in APE-Gen2.0. As before, SMINA is kept intact in the new
workflow, as it exhibits a very fast local search protocol and
because of its ability to consider the flexibility of the MHC
residues during docking. It is important to note that, as
previously reported, some of the favorable, low energy output
conformation produced by SMINA might deviate a lot from
the proper, anchor-restrained pMHC conformation, for
example, peptides floating away from the MHC binding cleft.
Therefore, when, for a particular peptide conformation, an L-
RMSD difference bigger than 2 Å is detected in the anchor
amino acids (N-terminus and C-terminus sides) when
compared to the chosen peptide template, this conformation
is filtered out.

In addition to the local search protocol by SMINA, we also
employ an optional energy minimization protocol using
OpenMM.79 This is done to further optimize the conformation
of the peptide side chains. During the energy minimization, we
apply an external force to the backbone atoms of the peptide in
order to keep the backbone intact. The employed force field
for the energy minimization is the Amber ff14SB force field,
with the addition of phosaa14SB parameters in case of
presence of phosphorylated residues in the peptide83 (other
PTMs are not yet supported in the optional OpenMM step).
The energy tolerance to which the system should be
minimized is set to 10× kJ/mol.

4.3. Comparisons with Other pMHC Modeling Tools.
Throughout the literature, each pMHC modeling tool
performs different evaluation experiments. Some tools perform
cross-docking leave-one-PDB-out experiments,26,30 while some
tools perform redocking experiments.21,28 Here, we chose to
evaluate performance based on two different experiments: (A)
a leave-one-PDB-out experiment, where APE-Gen2.0 is
directly compared to L-RMSD results reported by other
tools in the literature and (B) a left-out test set evaluation,
where a separate left-out test set is created, and we run and
evaluate all the tools on this test data set. In both evaluation
schemes, redocking is not considered, and we only test the
methods on cross-docking. In the following subsections, we
will describe in more details the evaluation protocol that we
have developed for each method.
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4.3.1. Comparison with PANDORA. 4.3.1.1. Leave-One-
PDB-Out Experiment. Similar to APE-Gen2.0, PANDORA, a
homology modeling approach, uses a curated database of
pMHC crystal structures to be used as templates during
pMHC modeling.30 However, the crystal structure database of
PANDORA contains duplicate pMHC structures in terms of
peptide−MHC pairs (although the PDB codes are different).
Additionally, it does not contain crystal structures that include
PTMs or structures that contain additional molecules inside
the pMHC binding cleft. As such, any performance gains of
APE-Gen2.0 could just be attributed to the different crystal
structure database contents. To ensure a proper comparison
between APE-Gen2.0 and PANDORA, we used the crystal
structure database from PANDORA as our crystal structure
database of reference instead. This certifies that performance
differences between the two methods on this experiment will
stem purely from the algorithm and the methodology used in
each method. We subsequently used this database to compare
APE-Gen2.0 and PANDORA in a leave-one-PDB-out cross-
docking scenario as previously proposed.30 Moreover, in
aiming for a proper comparison, similar to PANDORA, we
set the maximum number of conformations generated by APE-
Gen2.0 to 20 (the default is 100). Finally, as the crystal
structure database of PANDORA contains duplicate pMHC
structures, we opted in removing those from the database, as
this would introduce data leakage. Finally, the evaluation is
being done using 427 different structures in total. As
PANDORA followed the same leave-one-PDB-out evaluation
protocol, the L-RMSD results from PANDORA were taken
from the original publication.30

4.3.1.2. Left-Out Test Set Experiment. We identified, from
our template database, all pMHC pairs that do not appear in
PANDORA’s template database. We subsequently removed
those crystal structures from our database. This acts as the left-
out test data set, which neither APE-Gen2.0 nor PANDORA
has access to during the template selection step. From this test
set, during evaluation, we filtered out structures that
PANDORA could not model (mostly due to MHC allele
name support). This resulted in 58 different crystal structures.
As before, during modeling those structures with both
PANDORA and APE-Gen, the maximum number of
conformations generated was set to 20 (PANDORA’s default)
for a fairer comparison. The list of the PDB codes, along with
L-RMSD and MolProbity score results for each one, can be
found in Data S2 in Supporting Information.
4.3.2. Comparison with APE-Gen. 4.3.2.1. Leave-One-

PDB-Out Experiment. To compare APE-Gen2.0 to its
predecessor, we used our template database of 699 structures
(see the Template Collection and Curation section for more
details). Structures containing additional chains, foreign
molecules, or any modifications that might alter the structural
pose of the peptide were removed, leaving 569 structures for
evaluation in total. For this set of structures, we tested both
APE-Gen and APE-Gen2.0 on a cross-docking leave-one-PDB-
out experiment as previously proposed.30 We did not consider
the cases where APE-Gen failed to produce conformations
during evaluation. This resulted in 229 different structures that
we evaluated the performance of APE-Gen and APE-Gen2.0
on.
4.3.2.2. Left-Out Test Set Experiment. We used the same

pMHC pairs that we identified when comparing with
PANDORA’s template database. Similarly, as before, we
removed any crystal structure in our template that corresponds

to these pMHC pairs. We only consider the cases where APE-
Gen successfully produced conformations. PDB codes, L-
RMSD, and MolProbity scores for this comparison can be
found in Data S3 in Supporting Information.
4.3.3. Comparison with DockTope. 4.3.3.1. Leave-One-

PDB-Out Experiment. As per the original publication,
DockTope was tested on 135 nonredundant pMHC
structures.26 For each one of these structures, by using a
molecular docking/energy optimization approach, 1000
conformations were generated. We used these 135 structures
to also test APE-Gen2.0. For each of these structures, we
applied a cross-docking leave-one-PDB-out protocol, by
removing the crystal structure from the APE-Gen2.0 database
if it exists. Additionally, we generated 1000 conformations
instead of 100 (the default value of APE-Gen2.0) for a fairer
comparison with DockTope. DockTope L-RMSD results were
taken from the original publication.26 It is worth underlining
that this increased the APE-Gen2.0 execution time from under
a minute to 7−8 min per complex on average, but it is still well
below DockTope’s reported execution time of 6 h maximum.
4.3.3.2. Left-Out Test Set Experiment. As DockTope’s Web

server interface was not functional at the time of assessment
(assessed January 30, 2024), we could not model pMHC
complexes using DockTope. However, as DockTope is
restricted to very few alleles, the test set that could be used
for comparison purposes would have been too small to
confidently extrapolate. Therefore, all things considered, we
opted on not using DockTope for the left-out test set
experiment.

4.4. Details on Experiments Involving Post-Transla-
tionally Modified Peptides. 4.4.1. Crystal Structures
Involving PTMs. Crystal structures that exhibit PTMs were
downloaded from PDB.12 To enforce non-redundancy and
mitigate bias, duplicate structures were removed (example:
3BGM and 4NNX). To further mitigate modeling bias, non-
phosphorylated peptide counterparts that exist in the APE-
Gen2.0 crystal structure database were removed during
modeling. In total, 13 structures with phosphorylated peptides,
4 structures with citrullinated peptides, and 1 structure with a
nitrated peptide were used for assessing the accuracy of APE-
Gen2.0 in modeling post-translationally modified peptides (see
Table S4 in Supporting Information).
4.4.2. Post-Translationally Modified Peptides from IEDB.

We searched IEDB8 for peptide entries exhibiting one or more
PTMs with a corresponding IC50 value. Specifically, for each
PTM that can be modeled by APE-Gen2.0, we search for
peptide entries that contain the IC50 value of the peptide, as
well as entries that contain the IC50 of the non-PTM variant.
In regards to phosphorylation, we found 20 data points
deposited in the IEDB that contain IC50 values of both the
phosphorylated and the non-phosphorylated version of the
peptide. Fourteen of those peptides bind to HLA-A*02:01, and
6 of the peptides bind to HLA-B*40:02. Both the
phosphorylated and non-phosphorylated peptides are charac-
terized by a binding affinity value (measured in nM). For the
majority of peptides binding to HLA-A*02:01, phosphor-
ylation is seen at position 4, creating a negative charge which
improves binding, as previously discussed.58 A notable
exception is the β-catenin peptide (YLDSGIHSGA, PDB
codes: 3FQN, 3FQR),42 where the phosphorylation does not
contribute to better binding as expected. The majority of
phosphorylated peptides bound to HLA-B*40:02 exhibit the
opposite effect, that is, phosphorylation in position 4 mainly
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decreases binding affinity, as it has been previously observed.59

In regards to citrullination, 14 data points deposited in the
IEDB were found, all binding to HLA-A*02:01. As with the
phosphorylated peptides, all 14 data points contain IC50
values of both the citrullinated and the non-citrullinated
version of the peptide. For both the phosphorylated and
citrullinated peptides, if IC50 binding affinity values are better
than their non-phosphorylated/non-citrullinated counterparts,
then we consider the PTM to have positive effects on the
binding (labeled as better binding), else, we consider the PTM
to have negative/neutral effects on the binding (labeled as
worse binding). The list of all the IEDB curated peptides can
be found in Data S4 in Supporting Information.
4.4.3. In-House Data Set. A total of 19 selected peptides

(Data S5) across 5 alleles (HLA-A*01:01, HLA-A*02:01,
HLA-B*07:02, HLA-B*40:01, and HLA-C*07:02) were
obtained from Immunitrack company at a purity of >80%
with quality control by reverse-phase HPLC and mass
spectrometry (SC1208). All HLA molecules were made and
refolded as described elsewhere.84 For affinity measurements,
peptides were titrated (8 concentrations: 10,000 to 0.01 nM)
and incubated in the presence of each HLA followed by
analysis with conformation-dependent W6/32 antibodies to
determine the affinity of the peptides. The affinities were
determined by using sigmoidal curve fitting. For the stability
assays, peptides were incubated with each HLA to fold
complexes. After overnight incubation, the folded complexes
were transferred to 384 plates and subjected to stress at
increasing urea concentrations at 0, 1, 2, 3, 4, 5, 6, and 7 M,
followed by analysis with W6/32. Measurements were carried
out as duplicates, and reference peptides were included to
ensure the performance of the affinity and stability assay.

Similar to the post-translationally modified peptides from
IEDB, we want to differentiate between positive and negative/
neutral effects of the phosphorylation on the binding affinity.
As before, we assign a positive effect if the phosphorylation
results in a better binding affinity (labeled as better binding)
and a negative effect if the phosphorylation results in a worse/
similar binding affinity (labeled as worse binding). Neutrality is
assigned when a negligible change in binding affinity and a less
than 20% change in stability are observed.
4.4.4. 5-Experiment Protocol Specifications. The experi-

ment protocol is as follows: post-translationally modified
peptides and their non-modified counterparts from both IEDB
and Immunitrack were modeled using APE-Gen2.0. Later, the
Vinardo50 scoring function was used to score both the post-
translationally modified peptides and their non-modified
counterparts. The difference in Vinardo scores was used as a
determinant of positive/negative effects that the PTM can have
on peptide binding affinity. As the output from APE-Gen2.0 is
an ensemble of conformations, to assess the contribution of the
ensemble, we used both the conformation that gives the best
Vinardo score and the average Vinardo score from the whole
ensemble. However, due to the small number of peptides
collected from either IEDB or Immunitrack, and the non-
deterministic nature of APE-Gen2.0, scoring function results
vary between different APE-Gen2.0 runs. As such, we devised a
5-experiment protocol, where the above process is repeated 5
times, in order to avoid large variations in the results. For each
experiment, we get a Vinardo score for each peptide pMHC
complex. Therefore, after 5 experiments, the 5 Vinardo scores
were averaged in one final score for each pMHC structure. For
each post-translationally modified peptide and its non-

modified counterpart, we compare the two scores resulting
from the above 5-experiment protocol. If the Vinardo score is
better for the post-translationally modified peptide in
comparison to the non-modified peptide, its binding affinity
is then predicted to be better (effectively a labeling threshold
of 0). Finally, for all pMHC structures modeled, we opted in
not applying any constraints on the peptide backbone during
the OpenMM energy minimization steps, as it has been shown
that PTMs can lead to severe structural alterations on the
peptide backbone.18

4.4.5. Comparison with Rosetta FlexPepDock and Refine-
ment Protocols. To our knowledge, the only other effort in
modeling pMHC complexes that include PTMs is the work of
Bloodworth et al.25 Specifically, the authors modified the
Rosetta FlexPepDock24 and Refinement22 protocols in order to
be able to model peptides bound to MHCs that exhibit PTMs.
The authors were able to expand the Rosetta protocols to three
different PTMs. We wanted to compare APE-Gen2.0 to the
modified Rosetta protocols. We collected the 4 phosphorylated
peptide−MHC structures in the PDB12 that are also used in
comparisons in Bloodworth et al.25 We used APE-Gen2.0 for
modeling, setting the number of generated conformations to
1000 instead of 100 (the default value of APE-Gen2.0), as the
Rosetta Refinement protocol also generates 1000 conforma-
tions by default. The L-RMSD values reported in Bloodworth
et al.25 for the Rosetta FlexPepDock protocol, however, assume
50,000 conformations. This will practically cause the L-RMSD
values from Rosetta FlexPepDock to be better than if 1000
generated conformations were used instead.

4.5. Evaluation Metrics. 4.5.1. Ligand Root Mean
Square Deviation (L-RMSD). To evaluate the quality of a
conformation produced by a pMHC modeling tool in
comparison to a ground-truth crystal structure, we used the
L-rmsd, a standard metric used extensively in the liter-
ature26,28,30

=
=N

dL RMSD
1

i

N

i
1

where N is the total number of atoms found in the peptide,
while di is the Euclidean distance between a pair of two
corresponding atoms i from the two different structures
(model and ground truth). To calculate the L-RMSD, we used
ProFit,85 as previously used in PANDORA.30 Three different
types of L-RMSD scores were considered: (A) Cα L-RMSD,
calculated by considering only the Cα atoms of the peptide,
one per position, (B) backbone L-RMSD, considering only the
Cα, N, O, and C atoms, and (C) full-atom L-RMSD, taking all
the atoms of the peptide into account.

We also define a variant of the CAPRI criteria86 to
categorize L-RMSD values into different categories: (A)
high-quality conformations (L-rmsd ≤ 1 Å), (B) medium
(L-rmsd ≤ 1.5 Å), (C) acceptable (L-rmsd ≤ 2 Å), and (D)
incorrect (L-rmsd > 2 Å). The reason for not following the
already established CAPRI criteria here is because pMHC
modeling tools have long succeeded in producing near-native
(≤2 Å) conformations of most pMHC complexes. As such, we
wanted to have a more fine-grained categorization in the 1−2
Å frame.
4.5.2. F1 Score. To assess the quality of the anchor

identification module, we used the F1 score, defined as the
harmonic mean of precision and recall
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2 TP FP FN1

where TP is the number of true positives, FP the number of
false positives, and FN the number of false negatives. For the
purpose of our anchor identification task, a positive label
represents a non-canonical anchor case, while a negative label
represents a canonical anchor. The F1 score receives values
scaling from 0 to 1 (closer to 1 indicates better classification).
We make usage of the F1 score in this task because of the large
class imbalance between canonical and non-canonical anchor
cases. Specifically, the number of non-canonical anchor cases is
much lower than the canonical case. As such, we do not wish
to focus on the number of true negatives (not present in the F1
score), as identifying a canonical anchor case is an easy task.
4.5.3. MolProbity Score. We used MolProbity,55 more

specifically, the MolProbity score,56 in order to assess the
validity of our pMHC modeled structures, as well as to
compare APE-Gen2.0 MolProbity scores to MolProbity scores
taken from other pMHC structural modeling tools in the
literature.56 The MolProbity score is a single log-weighted
value, that combines the calculated clashscore (number of
serious clashes per 1000 atoms), the percentage of
Ramachandran outliers, and the percentage of bad side-chain
rotamers. A lower MolProbity score value corresponds to a
more protein-like model.
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