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Peptide binding to major histocompatibility complexes (MHCs) is
a central component of the immune system, and understanding
the mechanism behind stable peptide-MHC binding will aid the
development of immunotherapies. While MHC binding is mostly
influenced by the identity of the so-called anchor positions of
the peptide, secondary interactions from nonanchor positions
are known to play a role in complex stability. However, cur-
rent MHC-binding prediction methods lack an analysis of the
major conformational states and might underestimate the impact
of secondary interactions. In this work, we present an atomi-
cally detailed analysis of peptide-MHC binding that can reveal
the contributions of any interaction toward stability. We pro-
pose a simulation framework that uses both umbrella sampling
and adaptive sampling to generate a Markov state model (MSM)
for a coronavirus-derived peptide (QFKDNVILL), bound to one
of the most prevalent MHC receptors in humans (HLA-A24:02).
While our model reaffirms the importance of the anchor posi-
tions of the peptide in establishing stable interactions, our model
also reveals the underestimated importance of position 4 (p4), a
nonanchor position. We confirmed our results by simulating the
impact of specific peptide mutations and validated these predic-
tions through competitive binding assays. By comparing the MSM
of the wild-type system with those of the D4A and D4P mutations,
our modeling reveals stark differences in unbinding pathways.
The analysis presented here can be applied to any peptide-MHC
complex of interest with a structural model as input, representing
an important step toward comprehensive modeling of the MHC
class | pathway.

peptide-MHC binding stability | Markov state modeling |
adaptive sampling | competitive binding assay

lass I major histocompatibility complexes (MHCs), also

known as human leukocyte antigens (HLAs) in humans, are
proteins that bind to intracellular peptides and present them at
the cellular surface (1). In the endoplasmic reticulum, MHCs
are loaded with peptides of length 8 to 11 amino acids derived
from cleaved intracellular proteins. Then the combined peptide—
MHC complex is transported to the cell surface to be inspected
by surveilling T cells. T cell activation normally occurs when
a cell presents peptides not found in healthy cells, triggering
an immune response. Current efforts in immunotherapy aim to
amplify this mechanism to target diseased cells (i.e., infected or
tumoral). Since every patient has a different set of MHCs, this
problem must be addressed in a personalized manner, i.e., by
identifying disease-specific peptides that can bind to the MHCs
of a particular patient or to MHCs that will provide broad
population coverage.

Therefore, a prerequisite for T cell activation, or immunogenic-
ity, is stable binding to occur between a given peptide and MHC
(2). Peptides bound to MHC:s on the cell surface can be identi-
fied directly using mass spectrometry, and experiments have been
curated into databases such as SysteMHC Atlas (3). Additionally,
the binding affinities of peptides can be measured with competi-
tive binding assays, for example, which can provide half maximal
inhibitory concentration (IC50) values. In turn, results from bind-
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ing assay experiments have been curated into databases such as
the Immune Epitope Database (IEDB) (4). This accumulation
of experimental data has led to the popularity of sequence-based
methods for peptide-MHC binding prediction. These methods
are based on machine learning, typically with neural networks,
trained on sequences of known peptide-MHC pairs and can
rapidly predict binding affinity (5-8).

Moving beyond a simple measurement or prediction of bind-
ing, uncovering the molecular mechanisms for strong binding
usually starts with an analysis of a structure of the bound com-
plex. Structures can be from one of the few hundred crystal
structures available at the Protein Data Bank (PDB) or modeled
with a docking-based approach (9-14). However, an analysis of
a single conformation may be misleading due to the flexibility
of the structure (15), and the dynamics of peptide-MHC binding
must be probed. Along this direction, experimental methods such
as NMR (16, 17), hydrogen/deuterium exchange (18), and fluo-
rescence anisotropy (19) have been used to gain insight into the
flexibility of peptide-MHC complexes. However, these experi-
mental methods have particular limitations regarding the cost,
the size of the system, and the resolution of the results.

As an alternative, molecular simulations can be used to
analyze the stability and dynamics of peptide-MHC binding.
Such analysis can cover the major conformational states of
the process, while providing atomistic details that cannot be
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currently achieved with experimental methods. In this context,
many simulation studies have focused on bound peptide-MHC
complexes (20). Going even further, Ayres et al. (21) built a
simplified model for peptide flexibility in the binding site of
a particular MHC, and Wan et al. (22) used the Molecular
Mechanics Poisson-Boltzmann Surface Area continuum solva-
tion method to compute binding free energy estimates from
molecular dynamics (MD). For that, they simulated both bound
peptide-MHC conformations and fully unbound conformations
(22). While simulating bound/unbound states may be enough for
accurate binding affinity prediction, information on the inter-
mediate states and the transition between states is lacking. In
another study, a coarse-grained Monte Carlo-based framework
was developed for generating detachment pathways of pep-
tides exiting the MHC binding site (23). These detachment
pathways allow some analysis of the transition between bound
and unbound states. However, the use of coarse graining pre-
vents atomic-level predictions of peptide-MHC interactions that
could characterize the major states along the binding/unbinding
pathways.

Here we propose an analysis that goes beyond previous simula-
tion studies, capable of revealing all of the molecular interactions
that are driving the stability of a peptide-MHC complex. In other
words, we provide a model that can capture all of the major
conformational states along the binding/unbinding pathway, as
well as the transitions between those states, using atomistic MD.
Such models are known as Markov state models (MSMs) (24)
and allow for the quantification of both binding affinity and
stability for a given peptide-MHC complex (25-27). However,
building MSMs of the whole binding process for peptide-MHC:s,
in atomic-level detail, is computationally challenging. MHCs
are large systems composed of about 380 residues, which con-
tribute to the high computational cost of MD. More importantly,
the typical timescales involved in the binding process are sig-
nificantly longer than current MD simulations are capable of
reaching within a reasonable timeframe. For instance, while the
timesteps of typical full-atom MD simulations are on the order
of femtoseconds, the half-life of the more stable peptide-MHC
complexes reaches tens of hours (2).

To address the computational challenges, we propose a sim-
ulation framework for peptide-MHCs that splits the problem
into two stages: an exploration stage and a connection stage. The
exploration stage makes use of umbrella sampling (28), which is
a well-known technique that can accelerate the sampling along
an appropriate reaction coordinate. The connection stage makes
extensive use of the relatively newer class of methods called adap-
tive sampling (27, 29-33). Adaptive sampling works by iteratively
performing short MD simulations in parallel. At each iteration,
the next round of MD simulations is initialized using conforma-
tions that aim to optimize exploration using a restart strategy. The
restart strategy selects the conformations using all of the simula-
tion data already performed up to the given iteration. Adaptive
sampling methods are typically performed in conjunction with
MSMs (30, 32). MSMs are built by defining states and count-
ing transitions between states, producing a transition matrix that
contains the transition probabilities. Thus, MSMs do not require
each individual simulation to be long for construction, only long
enough to be able to count transitions. Adaptive sampling meth-
ods combined with MSMs are becoming increasingly popular as
a way to accelerate the sampling of MD, and recent studies have
been investigating how to optimize its use (32-35).

As an example case, we focus this work on studying the bind-
ing of the viral peptide QFKDNVILL with the human MHC
receptor HLA-A*24:02. The choice of this system is interest-
ing in multiple regards. First, a crystal structure is available for
this system (36), which we use to begin our modeling. Second,
HLA-A"24:02 is one of the most prevalent HLA allotypes in
the human population (4), being therefore highly relevant for
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several biomedical applications. Third, the displayed peptide is
derived from the nucleocapsid protein of severe acute respira-
tory syndrome coronavirus (SARS-CoV), and this protein has
over 90% sequence similarity with that of SARS-CoV-2, the
coronavirus that causes COVID-19 (37). Therefore, insights
from this system may be relevant for the current and/or future
coronavirus epidemics. Finally, the popular sequence-based pre-
dictor NetMHC4.0 (5) fails to correctly predict the binding
affinity of this peptide, potentially neglecting the role of key
secondary interactions.

Class I MHC:s usually bind peptides through dominant inter-
molecular interactions that typically involve the residues at both
ends of the peptide (so-called anchor residues). The chemical
properties of deeper pockets in the MHC binding cleft deter-
mine the “identity” of the preferred anchor residues. As a
consequence, we can usually summarize the binding profile of
a particular MHC allotype by specifying the types of residues
found in the anchor positions. For instance, IEDB data indicate
that the anchor residues for peptides binding to HLA-A*24:02
are position 2 (p2 anchor) and the last residue (C-term anchor),
with a preference for hydrophobic residues in both positions
(4). In particular, the p2 anchor is preferentially a tryptophan
(W) or tyrosine (Y), but the corresponding pocket can toler-
ate a phenylalanine (F). The C-term anchor is preferentially a
phenylalanine (F), isoleucine (I), or tryptophan (W), but the cor-
responding pocket can also tolerate a leucine (L) or methionine
(M). Note that the amino acid binding chart at IEDB does not
indicate any relevant preferences for peptide positions p3 to p6.
Although anchor residues vary depending on the MHC allotype,
middle positions are usually considered to be more exposed to
T cell interaction and less relevant for peptide-MHC binding
(38). Interestingly, the viral peptide QFKDNVILL, called WT in
this work as the “wild type”, has both anchor positions as “toler-
ated” residues. The lack of any preferred anchors might explain
the very low binding affinity predicted by NetMHC4.0 for this
complex (7,769.11 nM). While the strongest contacts in the WT
system are likely to still be formed by the anchor residues, we
are interested in the role of secondary interactions involving the
other nonanchor peptide positions, which may play a larger role
in the absence of strong primary anchors.

Thus, the objective of this work is to investigate the role of
secondary interactions in the binding of QFKDNVILL to HLA-
A*24:02. Using our proposed simulation framework (Fig. 1),
we generate over 150 us of MD data to build a MSM of
the entire binding/unbinding process. Our model predicts that
QFKDNVILL is capable of binding to HLA-A*24:02, and muta-
tional analysis based on reweighting of this WT system reveals
the importance of the nonanchor residue in position 4. Addi-
tional MSMs of two mutated peptide variants (D44 and D4P),
generated using around 500 us of total MD data, were used to
predict the relative ranking of these three systems, and this rank-
ing was confirmed using competitive binding assays. Detailed
analysis of the MSMs for the three different systems has revealed
alternative peptide-unbinding pathways, as well as alternative
ways in which position 4 (p4) can affect peptide-MHC stability.
Structural analysis of MHC binders that lack canonical primary
anchors, as the one described here, may provide the key to iden-
tify valuable peptide targets that are being currently missed in
vaccine development and T cell-based immunotherapy efforts.

Results

Simulation Framework Enables Building MSMs for Peptide—-MHC Bind-
ing/Unbinding. A simulation framework (Fig. 1) is used to gener-
ate MD data to build an MSM of the WT system. Characteristics
of the exploration and connection stages for the WT system can
be found in SI Appendix, Fig. S1. A total of 160 us of aggre-
gate simulation data were generated, where each simulation
takes ~15 h on a single Tesla V100 graphics processing unit

Abella et al.
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Overview of the simulation framework. (A) The exploration stage involves running umbrella-sampling simulations along the z-dist reaction coordi-

nate, which approximates the unbinding direction. B; is the energy bias, while k is the force constant. The 3-sheet floor of the MHC (light blue) is aligned to
the XY plane, and then the Z coordinate is used to define z-dist. The truncated portion of the MHC (light gray) is not included in any of the simulations. (B)
The connection stage involves running unbiased simulations in an adaptive sampling fashion until most of the states are connected. Restarting conforma-
tions are chosen by analyzing the trajectories in a dimensionality-reduced space using TICA that adequately captures the binding/unbinding pathway. Then
the selection of conformations is biased toward the less densely sampled regions of the TICA space.

(GPU), taking about 2,600 GPU-hours total. Time-lagged inde-
pendent components analysis (TICA) was performed to reduce
the dimensionality of the conformations (39, 40). We keep the
top two independent components, which adequately capture two
different detachment pathways that the peptide takes to go from
the native state to the unbound state (SI Appendix, Figs. S2 and
S3). One component roughly represents the detachment of the
N-term while the second one represents the detachment of the C-
term. After discretization of the TICA space into microstates, the
discrete transition-based reweighting analysis method (d{TRAM)
(41) was used to combine the biased and unbiased tra-
jectories from the two stages of the simulation framework
into a final MSM (Materials and Methods and SI Appendix,
Figs. S2-S4).

We partition the microstates into five states, which were
defined to distinguish between the major metastable states along
the binding pathway based on a previous study of detachment
pathways (23). Detachment pathways are mainly distinguished
by the order in which the anchor residues detach from the cor-
responding MHC pocket (23), which we captured in the MSM
through TICA. The two endpoints of binding are the native
state (state 0) and the unbound or dissociated state (state 4).
The native state (state 0) is defined as the set of all microstates
with an average all-atom rmsd of below 0.2 nm from the crys-
tal structure. The unbound/dissociated state (state 4) is defined
as the set of microstates where the minimum distance between
the peptide and MHC is greater than 0.5 nm. The next two
states define partially bound states where only a single anchor
of the peptide is in the corresponding MHC pocket. The N-
term bound state (state 1) is defined as the set of nonnative
microstates where the center of mass of position 2 in the peptide
is below 0.2 nm from the center of mass of the native position 2
location. The C-term bound state (state 2) is defined as the set
of nonnative microstates where the center of mass of position
9 in the peptide is below 0.2 nm from the center of mass native
position 9 location. State 3 defines all of the other associated
microstates which have the peptide in contact with the MHC.
Typical conformations can be found within each of the five states
(see Fig. 4).

The MSM for WT predicts that the native state is the most
probable state (P (native state) = o = 0.906), despite the lack of
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strong primary anchors. Therefore, our model predicts the sta-
ble binding of QFKDNVILL to HLA-A*24:02, which is in line
with crystallographic evidence (36). The predicted free energy of
binding was A Gyr = —7.19 + 1.02 kJ/mol.

Mutational Analysis of the WT MSM Reveals the Importance of Pep-
tide's Position 4 toward Binding. We used the MSM of the WT
system to perform mutational analysis based on reweighting the
state probabilities computed from the MSM and predict the
change to the binding affinity upon alanine mutation (Fig. 2).
Unsurprisingly, the F2A and L9A mutations were predicted to
be most disruptive to binding, as positions 2 and 9 are the
primary anchor residues for this peptide. However, the D4A
mutation was also predicted to be remarkably disruptive to
peptide binding (Fig. 2). This implies that secondary interac-
tions involving p4 must be particularly relevant for the binding
of WT.
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Fig. 2. AAG predictions from the mutational analysis. The black dashed
line represents the predicted AGyr of —7.19 kJ/mol. The gray dashed
line represents the separation between predicted binders and nonbinders.
Alanine mutations in positions 2, 4, and 9 are all predicted to signifi-
cantly impair binding, while alanine mutations in positions 1, 5, and 7 are
predicted to reduce the binding affinity.
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We can decompose the effect of the alanine exchanges across
the different associated states (i.c., states 0, 1, 2, and 3) (Table 1).
Mutating the anchor residues (i.e., p2 and p9) has the expected
effect of destabilizing the states associated with the presence of
these respective positions in the corresponding MHC pockets. In
other words, for the F2A mutation, the native state (state 0) and
the N-term bound state (state 1) are most destabilized, while for
the L9A mutation, the native state and the C-term bound state
(state 2) are most destabilized. The native state (state 0) and the
N-term bound state (state 1) are also most destabilized for the
D4A mutation. Given that this peptide is a 9-mer, position 4 is
closer to the N-term side and is likely playing a role in stabilizing
the interactions from that end.

We can use the WT MSM to analyze the relevant intermolec-
ular contacts by computing the probability that a given contact
exists while the system is within a particular state (SI Appendix,
Figs. S5-S8). In the native state (state 0), the aspartic acid
in position 4 of the peptide (D4) was more likely to interact
with MHC residues K66, Q155, Y159, and T163 (SI Appendix,
Fig. S5). Given the three-dimensional (3D) arrangement of the
binding cleft (see Fig. 5), the D4-K66 and D4-T163 interac-
tions are not surprising. On the other hand, the contributions
of Q155 and Y159 are less obvious, despite being predicted to be
even more important for the N-term bound state (SI Appendix,
Fig. S5).

The mutational analysis can be performed on the MHC side
as well, and we used the MSM of the WT system to evaluate
the impact of mutations Q155A and Y159A. Interestingly, the
MSM predicts Y159A to have a similar detrimental impact on
binding (A Gy;so =4.86 £0.77 kJ/mol) to that observed for the
D4A mutation. The same impact was not predicted for Q155A
(A Gpiss4a = —7.52+0.37 kJ/mol). Visual inspection of confor-
mations obtained from states 0 and 1 indicates a network of
hydrogen bonds involving D4 and MHC residues K66 and T163.
Due to the side chain flexibility of D4, direct hydrogen bonds
between D4-Q155 and D4-Y159 can also be observed in some
conformations.

MSMs of D4A and D4P Indicate Alternative Roles for p4. To confirm
the dominant role of hydrogen bonds on the beneficial role of p4
for peptide binding, we created MSMs with two peptide variants:
D4A and D4P. Characteristics of the exploration and connec-
tion stages for the D4A system can be found in SI Appendix,
Fig. S9. A total of 213 ps of aggregate simulation data were
used to build the MSM (Materials and Methods and SI Appendix,
Figs. S10-S12), taking approximately 3,000 GPU-hours to com-
plete. Our model for D44 predicts that the unbound state is the
most probable state (P(unbound state) =74 =0.601). We pre-
dict AGpgs =1.02+1.01 kJ/mol, thus corroborating the muta-
tional analysis prediction based on the WT network (Fig. 2)
and predicting QFKANVILL to be a much weaker binder to
HLA-A*24:02.

Characteristics of the exploration and connection stages for
the D4P system can be found in SI Appendix, Fig. S13. A total
of 293 us of aggregate simulation data were used to build the

Table 1. Destabilization of the metastable states upon
alanine mutation

Mutation\state 0 1 2 3
F2A 38.7 37.7 7.3 6.7
D4A 14.9 17.5 3.5 4.6
L9A 19.8 1.1 15.9 8.7

Shown are the values RT[In(Z),/z8s0dted) _ |n(Z%i /zdissodatedy) i
kJ/mol (Materials and Methods) for all associated states S;. Computed val-
ues are all in reference to the dissociated state, so the values for state 4
would all be zero.
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MSM (Materials and Methods and SI Appendix, Figs. S14-S16),
taking approximately 4,300 GPU-hours to complete. By replac-
ing the flexible polar D4 with a rigid nonpolar P4, we expected to
observe similar results to that of D4A4. Surprisingly, the resulting
MSM predicted D4P to be a stronger binder (A Gpsp = —8.01 +
0.18 kJ/mol) than WT. We also evaluated the impact of the MHC
mutations Q155A and Y159A using the MSM of D4P, but these
mutations were not predicted to affect the binding of the peptide.
Taken together, these results indicate that P4 benefits peptide—
MHC binding through a mechanism that is different from that
observed for D4 (i.e., does not rely on hydrogen bonds with the
aforementioned MHC residues).

Competitive Binding Assays Confirm Predicted Ranking of Rela-
tive Binding Affinities. To validate our MSM-derived predictions
we performed competitive binding assays with WT, D4A, and
D4P (Fig. 3). First, QFKDNVILL (WT) shows partial inhibi-
tion across a variety of concentrations (IC50wt = 1,600 nM), but
does not reach the level of the positive control. This confirms
the MSM prediction of weak yet stable binding of WT toward
HLA-A"24:02. Note that NetMHC4.0 not only predicts this pep-
tide to be a much weaker binder (7,769 nM), but also predicts
DA4A to be a stronger binder (4,154 nM). However, our binding
assay with D44 shows little to no inhibition across concentrations
(IC50psa > 6,000 nM), thus confirming the MSM prediction that
this mutation significantly impairs binding to HLA-A*24:02.
Finally, the binding assay of D4P confirmed the MSM predic-
tion that this mutation in fact enhances binding to HLA-A*24:02
(IC50psp = 600 nM).

MSM Flux Analysis Reveals Alternative Unbinding Pathways. By
comparing the WT' MSM with the MSM of the mutants (D44
and D4P), we can identify differences in unbinding pathways.
This analysis was done by computing the percentage of flux that
goes from the native state (state 0) to the unbound state (state
4). Fig. 44 shows that the majority of WT unbinding pathways
first detach from the C-term end. However, upon D4A muta-
tion, the majority of unbinding pathways detach first from the
N-term end (Fig. 4B). Note that both pathways are accessi-
ble for the D4A4 system, but the lack of stabilizing interactions
involving position 4 allows for the alternate unbinding route. In
addition, D44 prefers to stay in the unbound state (state 4),
as opposed to WT’s preference of staying in the bound state
(state 0). The stabilizing effect of D4 on WT seems primar-
ily related to the interaction with MHC positions K66, T163,
Y159, and Q155, respectively. Interestingly, these positions are
mostly conserved across HLA allotypes (SI Appendix, Fig. S17).
In particular, D4 interactions with K66 and T163 can be easily
observed both in state 0 and in state 1 (Fig. 5), which is con-
sistent with the role of stabilizing the N-term portion of the
peptide.

The D4P mutation revealed a different picture. Like D44, the
D4P system has a preference to unbind from the N-term first.
In fact, all sampled unbinding trajectories for the D4P system
showed the N-term detaching first, and there were zero trajecto-
ries sampled where the C-term detaches first (i.e., although the
MSM included transitions from state 0 to state 1, and from state
1 back to state 0, none of the trajectories included transitions
from state 1 to states 3 and 4). However, unlike D44, D4P is
a more stable binder, and the various bound states (states 0, 1,
and 2) have higher equilibrium probabilities (Fig. 64). There-
fore, the inability of D4P to detach first from the C-term side
represents a decrease in unbinding options of the system, even
offsetting any destabilizing effect from the lack of a salt bridge
with p4.

Finally, Fig. 64 shows that the native state for the D4P system
appears to be relatively less stable than other intermediate states
compared to the WT system, despite being a stronger binder.

Abella et al.
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Fig. 3. Competitive binding assays to determine the ranking of WT, D4A, and D4P. Based on the relative position of the WT curve (green plus) versus the
positive control (blue circle), we see that QFKDNVILL is indeed a weak binder to HLA-A*24:02 (IC50t = 1,600 nM). Upon mutation of D4 to an alanine,
inhibition is significantly reduced (IC50p4a > 6,000 nM) as the D4A curve (red cross) is most similar to the negative control (purple triangle). Upon mutation
of D4 to a proline, inhibition is increased (IC50p4p = 600 NnM) as the D4P curve (orange square) is most similar to the positive control.

Currently, it is not known whether QFKPNVILL is immuno-
genic. In addition to the lack of a charged residue in the T
cell receptor binding interface, T cell recognition of this com-
plex may be impaired by a less stable peptide-MHC native
state. However, further experiments are needed to investigate
the immunogenicity of the D4P system.

Proline’s Rigid Backbone Prevents Torsions that Would Facilitate
Unbinding. The D4P system has a strong preference to unbind
from the N-term side first. While it is possible for the D4P sys-
tem to be in a state with the C-term unbound (state 1, Fig. 64),
our sampling suggests that it is difficult for conformations to
then progress to a state in which the N-term is subsequently
unbound (state 3). To investigate why, the backbone torsions
of position 4 were extracted from the unbinding trajectories of
WT and D4A where the C-term unbinds first and compared with
the Ramachandran plot of prolines (42). In Fig. 6B, we see that
trajectories starting in the native state (state 0) lie in regions
overlapping with the possible phi/psi angles for prolines. How-
ever, as the WT/D4A transitions to having the C-term unbind first
(state 1), p4 adopts a backbone conformation that is inaccessi-
ble for prolines. Unbinding trajectories continue to be outside
the accessible region of prolines as WT/D4A transitions from
state 1 to state 3 (anchors unbound, but peptide in contact with
MHC). Therefore, the rigidity of the proline backbone in D4P
prevents transitions from state 1 to state 3 and subsequently from
becoming fully unbound.

Discussion

In this work, we studied the mechanism behind stable binding
of QFKDNVILL to HLA-A*24:02. We proposed a simula-
tion framework that makes it feasible to generate MD data
to build an MSM of the entire binding/unbinding process. As
expected, our model predicted the importance of the anchor
residues in positions 2 and 9, as demonstrated by mutational
analysis. Interestingly, these analyses also singled out the con-
tribution of the nonanchor position 4 to the stability of the
system. To further explore the role of this position on peptide
binding, we used our model to estimate the impact of two dif-
ferent mutations over the peptide’s binding affinity and later
confirmed our prediction with competitive binding assays. While
D4A significantly impairs peptide binding, D4P leads to stronger
binding.

In addition, by building the MSMs for each of these systems
we were able to observe alternative unbinding pathways. While
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the WT system is more likely to start unbinding from the C-term
end, both D44 and D4P are more likely to unbind the N-term
first. This behavior is consistent with the loss of key interactions
observed in the WT system, particularly between p4 and MHC
residues K66, Q155, Y159, and T163. Interaction with K66 is not
surprising, since a D4-K66 salt bridge can be observed on the
original crystal structure (PDB code 3I6L), as well as in other
conformations corresponding to the bound state (Fig. 5C). In
particular, K66 and T163 seem to be able to keep D4 in place,
even when the peptide is already partially unbound from the C-
term end (Fig. 5D). Visual inspection also suggests other roles
for these MHC residues, notably interactions between p1-Y159
and p5/p6-Q155 (Fig. 5).

Interestingly, our model also predicts direct interactions
between D4 and both Q155 and Y159 (SI Appendix, Figs. S5
and S6). In fact, the Y159A exchange had a negative impact
on the binding of the WT, similar to that observed for D4A.
The same impact was not detected when introducing Y159A on
the D4P system. Taken together these results suggest two dif-
ferent mechanisms through which p4 can contribute to peptide—
MHC stability. Polar residues, particularly negatively charged
residues, such as aspartic acid, can benefit from a network
of conserved interactions that help stabilize the N-term end
of the peptides. On the other hand, having a proline at p4
makes it harder for the peptide backbone to bend in ways that
would favor peptide detachment (Fig. 6). Although our analy-
sis was limited to a few peptide-MHCs of interest, we believe
the two binding mechanisms involving p4 might be of broader
relevance to peptide-MHC binding in general. Two interest-
ing observations provide additional support to this hypothe-
sis. First, all of the aforementioned MHC residues, that are
potential p4 contacts, are present in the consensus sequence
produced by aligning over 10,000 protein sequences includ-
ing HLA-As, HLA-Bs, and HLA-Cs (SI Appendix, Fig. S17).
The prevalence of K66 is not very high, about 40% across all
types, being often replaced with N in HLA-As and I in HLA-
Bs. T163 is particularly high among HLA-A sequences (74%).
Most notably, Q155 and Y159 are present in over 99.9% of
the sequences for all HLA types, and the peptide-binding con-
tribution of these specific MHC positions has been observed
in previous studies (43, 44). Second, across sequences of HLA
binders, the observed frequencies of aspartic acid and proline
were shown to be 2.2 times more frequent than expected rela-
tive to the proteome (7). Another negatively charged residue,
glutamic acid, was also found to be 1.6 times more frequent
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Fig. 4. Flux network of unbinding trajectories for the WT system. States 0, 1, 2, and 3 denote the set of associated states that have the peptide in contact
to the MHC. State 4 represents the dissociated or unbound state. Size of the nodes (depicted in red) indicates the equilibrium probabilities of each state (r;).
(A) The WT system prefers to unbind through detaching first on the C-term end (state 0 to state 1 transition) due to the stronger interactions on the N-term
end, which include the aspartic acid in position 4. (B) With a single mutation, the D4A system prefers to unbind through detaching first on the N-term end
(state O to state 2 transition), and the accessibility of both detachment pathways favors the instability of the D4A system. Note that the MSM model includes
all transitions between nodes, in all directions. However, this flux network depicts only trajectories starting from state 0 and reaching state 4 (i.e., unbinding

pathways).

than expected (7). Further experimental studies will be needed
to investigate the differential contribution of these interactions
on the binding of different peptides and across different HLA
allotypes.

This work applies MSMs to describe the preferred unbind-
ing pathways for peptide-MHC complexes. In addition, to the
best of our knowledge, this is also the largest computational
exploration of peptide-MHC dynamics to date (over 650 ps).
This unique combination of methods provided a wealth of infor-
mation on the studied systems, including the contributions of
particular interactions to peptide binding and complex stability.
Such analysis can also be done for any other peptide-MHC of
interest, providing an initial 3D structure of the complex. In the
absence of a crystal structure, an appropriate 3D model could
be used, and our group has also contributed tools for this par-
ticular task (13, 14). The computational cost to build the MSMs
was manageable and was done using local GPU computing clus-
ters (about 10,000 GPU-hours compared to 115,000 GPU-hours
in ref. 26).

While this work demonstrates the feasibility of using MD
and MSMs to study peptide-MHC dynamics, it is important
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to note that the approximations performed here could have an
impact on obtained results. The use of an implicit solvent, for
instance, can have an effect on the dynamics of the system and
artificially accelerate the time for events to occur. In addition,
hydrophobic interactions are typically the major contributions
of peptide-MHC binding, particularly for the anchor residues,
and the finite size of water molecules may need to be accounted
for. Finally, there is evidence of allostery where peptide binding
affected the dynamics of remote regions in HLA-A2, including
the a3 and 8-2 microglobulin domains (45). While we used posi-
tional restraints on the S-sheet floor to minimize the potential
impact, the full effect of the MHC truncation in our simulations
is unknown.

Future work can focus on ways to improve the accuracy of the
final MSM. This is likely in the form of including more atoms into
the system, such as the -2 microglobulin portion of the MHC,
explicit water molecules, or even the other proteins involved in
keeping MHC:s in the peptide-receptive state (46). However, the
simulation output similarly needs to be kept high for enough
statistics to be generated. Other enhanced sampling approaches
(47) could conceivably be done as long as there is a way to
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Fig. 5. Representative conformations in the WT system from state 0 (native
state) and state 1 (N-term bound state). A and B depict the side views of
states 0 and 1, respectively. These states can be distinguished by the loca-
tion of the C-term of the peptide relative to the MHC binding cleft (i.e.,
proximity to the F pocket). C and D depict the top views of states 0 and 1,
respectively. Peptide’s p4 residue (aspartic acid, D) is depicted in magenta
(carbon atoms in magenta; oxygen atoms depicted in red). Other peptide
positions are depicted in green. Key MHC residues predicted to interact with
p4 are depicted in yellow (carbon atoms in yellow; oxygen atoms depicted
in red; nitrogen atoms in blue; hydrogen atoms in white), including lysine 66
(K66), threonine 163 (T163), tyrosine 159 (Y159), and glutamine 155 (Q155).
Hydrogen bonds involving any of these residues are depicted in yellow
dashed lines.

produce an unbiased MSM in the end. The use of coarse grain-
ing is also promising; however, it is highly nontrivial to perform
in such a way that does not negatively influence the computation
of kinetic quantities (48, 49).

Finally, it is worth noting that the peptide studied here
(QFKDNVILL) was derived from the nucleocapsid protein of
SARS-CoV, and a highly similar peptide exists in the nucleo-
capsid protein of SARS-CoV-2 (NFKDQVILL). The differences
between the two peptides do not appear to be significant, as
asparagine and glutamine are both polar, uncharged residues.
More importantly, both peptides share the same residues in
positions 2, 4, and 9, which means that the analysis we have
performed here likely applies to both systems. Finally, given
that D4 and K66 are exposed for the recognition by T cells,
this conserved interaction could be the focus of cross-reactive
T cell responses (i.e., T cells primed with QFKDNVILL may
also recognize NFKDQVILL). In fact, cross-reactivities involv-
ing D4 in other viral peptides have already been predicted (50)
and confirmed experimentally (51). Regardless of its role in T
cell recognition, the alternative roles of p4 in peptide-MHC
binding and stability highlight the importance of structure-
based methods in the analysis of peptide-MHC binding and
the discovery of peptide targets for several immunotherapy
applications.

Materials and Methods

Molecular Dynamics Protocol. In this work, we simulate only the binding site
of the MHC to make the whole framework more computationally tractable.
While the entire peptide-MHC complex is a large system of around 380
residues total, we exclude the 3-2 microglobulin and portions of the « chain
(a-3) of the MHC, leaving two a-helices (a-1 and a-2 in yellow; Fig 1A) and
the B-sheet floor (in light blue; Fig 1A) that enclose the bound peptide. This
roughly results in a system half the size of the original (around 190 residues
total). The MHC portion that was truncated is likely important for overall
stability of the MHGC, so in all simulations we include a positional restraint on
the C, atoms of the B-sheet floor (force constant: 100 kJ-mol-nm~2), which
include the main contacts formed between the simulated binding site and
the truncated portion.
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In all simulations, the AMBER99sbildn (52) force field was used with
implicit solvent (GBSA OBC) (53). Simulations were performed at 300 K with
the Langevin integrator (friction coefficient: 0.1 ps~'). The hydrogen masses
were artificially increased to 4 amu to allow a 4-fs timestep. Starting confor-
mations were equilibrated for 500 ns with the positional restraints on the
C, atoms of the whole system.

Exploration Stage: Umbrella Sampling. Umbrella sampling is used to accel-
erate the exploration of the relevant states of the binding process. Biased
sampling is needed here since the half-life of peptide-MHC binding can be
on the order of seconds or greater (2). Starting with the crystal structure of
WT (PDB code 3I6L), we generate detachment/unbinding pathways of the
peptide.

The geometry of the MHC allows us to define a convenient reaction coor-
dinate for the umbrella sampling. Bound peptides are enclosed between
two a-helices atop a 3-sheet floor. To detach, peptides must essentially
unbind in a direction that is approximately normal to the 3-sheet floor (23),
which is roughly planar (50). We can see from Fig. 1A that the principal axis
of the (nontruncated) system happens to roughly align with this direction.
Thus, if the principal axis is aligned to the Z direction in Euclidean space, the
B-sheet floor becomes approximately aligned to the XY plane, and a bias
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Fig. 6. (A) Flux network of unbinding trajectories for the D4P system. The

introduction of a proline forces the unbinding starting from the N-term
side (state 2). (B) (Blue contour) Phi/psi angles (in radians) of position 4
from WT/D4A unbinding trajectories where the C-term side unbinds first.
The bottom region covers states 0 and 1, while the top region covers state
3. (Orange border) Ramachandran plot of accessible phi/psi angles of pro-
line. Unbinding trajectories during the transition from state 1 to state 3
lie in regions that do not overlap with the accessible phi/psi angle of pro-
line. Thus, the unbinding trajectories adopt backbone conformations of p4
that are incompatible with the rigidity of proline. Note that the MSM of
D4P (A) includes transitions from state 0 to state 1 and from state 1 back
to state 0. However, these transitions are not depicted in the flux net-
work, since none of the paths passing by state 1 were able to progress to
state 4.
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along the Z direction can be used to accelerate sampling along the bind-
ing/unbinding pathway. The biases for the umbrella-sampling simulations
are based on the distance between the center of masses of the peptide and
the MHC along the Z coordinate. We call this distance the z-dist. We use
the C, atoms of the 3-sheet floor as a stable set of atoms to compute the
center of mass for the MHC; these are the same atoms from which we add
positional restraints.

Given the description of the reaction coordinate above, we run umbrella-
sampling simulations across z-dist umbrellas centered from 1.0 to 3.0 nm (in
increments of 0.1 nm) with a force constant of 100 kJ-mol-nm~2, where the
the z-dist of the native state is approximately 1.0 nm. Each simulation was
run for approximately 1 us, producing many detachment trajectories across
the runs. Additional umbrella-sampling simulations were done for D4A with
a looser force constant (10 kJ-mol-nm~2) given that the peptide is known
to be a nonbinder and is less stable. Several replicates were performed, par-
ticularly for umbrellas centered in the 2.0- to 3.0-nm range to sample more
association/dissociation events.

Connection Stage: Generating Transition Statistics with Adaptive Sampling.
In this stage, we use adaptive sampling to run enough unbiased molec-
ular dynamics to produce a final MSM that connects most of the states
generated (Fig. 1B). At each iteration, a new set of about 20 unbiased
molecular dynamics simulations is spawned from starting conformations
chosen from less densely sampled regions of the conformational space.
The conformations are chosen based on the analysis of the set of trajec-
tories that have already been generated. Trajectories are first featurized
using residue-residue contacts (defined as the closest heavy atom distance)
between peptide with MHC and peptide with itself. Then the conforma-
tions are mapped to the two leading independent components using TICA
(39, 40) (lag 10 ns), and the space is discretized into microstates with K
means (100 clusters). Next, microstates are chosen with probability inversely
proportional to the number of conformations mapped to it, and a confor-
mation is uniformly randomly chosen from the microstate as a starting point
for the next round of simulations. We repeat the adaptive sampling itera-
tions until a MSM can be built using more than 90% of the microstates (S/
Appendix, Figs. S1, S9, and S13). All simulations were run using CUDA and
OpenMM (54) and performed on NOTS as part of Rice University’s Center of
Research Computing.

Building the MSMs. Similar to the adaptive sampling process, the trajecto-
ries were featurized using residue-residue contacts between peptide with
MHC and peptide with itself, resulting in 1,692 contacts. We extract two
independent components using TICA using a lag time of 10 ns based on the
convergence of timescales (S/ Appendix, Figs. S2A, S10A, and S14A). The two
leading independent components adequately capture the transition to and
from the native and unbound states (S/ Appendix, Figs. S3, S11, and S15).
This space was discretized into microstates using K means with 100 clusters.
From the trajectories on the discretized space, discrete dTRAM was used to
build a Markov state model (41), taking into account the biases introduced
with the umbrella-sampling simulations. A final MSM was constructed using
a lag time based on the convergence of timescales (S/ Appendix, Figs. S2B,
S10B, and S14B). Error bars are computed based on a moving block proce-
dure for bootstrapping (55). The final MSMs are self-consistent based on the
Chapman-Kolmogorov test (S/ Appendix, Figs. S4, S12, and S16). All analysis
was performed using MDTraj (56) and Pyemma (57).

Mutational Analysis. We can estimate the changes in the free energy of
binding upon mutation (AAG) for residues in the peptide or MHC. We do
this with free energy perturbation theory (58, 59). The change in binding
free energy is computed as

AAG=AGmut — AGwt

_ associated dissociated associated dissociated
(6 - Gl ) - (e - o)

mut mut
_ associated associated dissociated dissociated 1
- (Gmut - th )7 (Gmut - th ) [l

zassociated zdissociated
= —RTln (L +RTIn [ 2t ),

associated dissociated
Zwt 4 wt

where RT:2‘479% at temperature T=298 K, and Z is the configura-
tional partition function for the corresponding system. The last two terms
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represent AGEsodated and — AGdisedated thus completing the free energy
cycle. Positive values of AAG indicate that the mutant is a weaker binder,
while negative values of AAG indicate that the mutant is a stronger binder.

The ratio of configurational partition functions over a state S can be

manipulated as
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where U(x) is the potential energy. The average is taken using the station-
ary probabilities, p(x), of the WT system computed from the MSM/dTRAM
analysis. Thus, the following ratios can be finally computed as

zd issociated

mut erSD e—(f(Umut(X)—UWt(x))M(X)

z(vivitssociated ZXESD N'(X) -
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where a configuration, x, is in Sp, the dissociated state, if the minimum dis-
tance between the peptide and MHC is greater than 0.5 nm. Otherwise, x is
in Sa, the associated state.

The original and mutation energies are computed using the same force
field from the molecular dynamics simulations [AMBER99sbildn force field
(52) with GBSA OBC implicit solvent (53)] but only nonbonded terms were
considered. Mutated structures were generated with PyMOL where the
original amino acid was cut back to the Cg-atom and hydrogen atoms
were added, resulting in an alanine structure. The value of the dihedral
angle C—C,—Cg—Hgy was taken to be the dihedral angle of the original
residue, C—C, —Cg—C, (or C—C,—Cg—C,4 for the valine in position 6 and
isoleucine in position 7).

Competitive Binding Assays. \We run competitive binding assays to find the
binding affinities of QFKDNVILL (WT), QFKANVILL (D4A), and QFKPNVILL
(D4P) with HLA-A*24:02. Fluorescent and unlabeled peptides were synthe-
sized by BioSynthesis, Inc. EBC-1 cells used for assay were transduced with
HLA-A*2402 for increased expression. The competition peptide assay fol-
lowed protocol established by Kessler et al. (60). In brief, EBC-1 cells were
washed with elution buffer and then incubated overnight in the dark with a
fixed concentration of a known HLA-A*24:02 binding peptide tagged with
GFP and varying concentrations of test peptides. Cells were analyzed on a
FACs CANTO Il analyzer and median fluorescence intensity was measured.
1C50 values were determined using nonlinear regression from GraphPad
Prism 8.0.

Multiple-Sequence Alignment. A total of 19,689 protein sequences were
downloaded from IMGT/HLA (61), corresponding to the three classical class
I HLA genes (HLA-A, HLA-B, HLA-C). Since many sequences did not cover
the entire protein length, we removed entries with less than three-quarters
of the complete sequence, resulting in a total of 10,435 sequences (HLA-A,
3,160; HLA-B, 3,788; HLA-C, 3,487). A multiple-sequence alignment was per-
formed with MUSCLE (62), and the visual inspection was performed with
Jaview (63).

Data Availability. Code for umbrella sampling, adaptive sampling, and
MSM analysis, as well as representative structures, can be found in Github
at https://github.com/KavrakiLab/adaptive-sampling-pmhc. Simulation data
are available upon request.
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